Forcing of anthropogenic aerosols on temperature trends of the sub-thermocline southern Indian Ocean

نویسندگان

  • Tim Cowan
  • Wenju Cai
  • Ariaan Purich
  • Leon Rotstayn
  • Matthew H. England
چکیده

In the late twentieth century, the sub-thermocline waters of the southern tropical and subtropical Indian Ocean experienced a sharp cooling. This cooling has been previously attributed to an anthropogenic aerosol-induced strengthening of the global ocean conveyor, which transfers heat from the subtropical gyre latitudes toward the North Atlantic. From the mid-1990s the sub-thermocline southern Indian Ocean experienced a rapid temperature trend reversal. Here we show, using climate models from phase 5 of the Coupled Model Intercomparison Project, that the late twentieth century sub-thermocline cooling of the southern Indian Ocean was primarily driven by increasing anthropogenic aerosols and greenhouse gases. The models simulate a slow-down in the sub-thermocline cooling followed by a rapid warming towards the mid twenty-first century. The simulated evolution of the Indian Ocean temperature trend is linked with the peak in aerosols and their subsequent decline in the twenty-first century, reinforcing the hypothesis that aerosols influence ocean circulation trends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On potential causes for an under‐estimated global ocean heat content trend in CMIP3 models

[1] Trends in global oceanic heat content (OHC) over the late 20th century as simulated by climate models that incorporate all radiative forcing factors are smaller than the observed, but the causes are not clear. Given the cooling effect associated with increasing anthropogenic aerosols and natural forcing (i.e., volcanic aerosols), we examine their respective roles in the simulated global OHC...

متن کامل

The Response of the Indian Ocean Dipole Asymmetry to Anthropogenic Aerosols and Greenhouse Gases

The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive IndianOcean dipole (IOD) that is well captured by climate models from phase 5 of the CoupledModel Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. Howev...

متن کامل

Multidecadal Indian Ocean Variability Linked to the Pacific and Implications for Preconditioning Indian Ocean Dipole Events

The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the IndianOcean in the hindcast are consistent with those recorded in observational products and ocean re...

متن کامل

Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing

[1] We present results from a series of ensemble integrations of a global coupled atmosphere-ocean model for the period 1865–1997. Each ensemble consists of three integrations initialized from different points in a long-running GFDL R30 coupled model control simulation. The first ensemble includes time-varying forcing from greenhouse gases only. In the remaining three ensembles, forcings from a...

متن کامل

A study of ocean thermal energy conversion in the southern Caspian Sea

Nowadays, in consideration of environmental issues and limitation of fossil fuels, there is a particular consideration of renewable energy including Ocean Energy, that can extracted going through various methods such as Wave Energy, Tidal Energy, Salinity Gradient, OTEC: Ocean Thermal Energy Conversion.Herein this research, operation of OTEC Method in Southern Caspian Sea has been discussed. Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013