Compositions and Fibonacci Identities
نویسندگان
چکیده
We study formulas for Fibonacci numbers as sums over compositions. The Fibonacci number Fn+1 is the number of compositions of n with parts 1 and 2. Compositions with parts 1 and 2 form a free monoid under concatenation, and our formulas arise from free submonoids of this free monoid.
منابع مشابه
Toeplitz transforms of Fibonacci sequences
We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.
متن کاملINVERSE-CONJUGATE COMPOSITIONS INTO PARTS OF SIZE AT MOST k
An inverse-conjugate composition of a positive integer m is an ordered partition of m whose conjugate coincides with its reversal. In this paper we consider inverseconjugate compositions in which the part sizes do not exceed a given integer k. It is proved that the number of such inverse-conjugate compositions of 2n − 1 is equal to 2F n , where F (k) n is a Fibonacci k-step number. We also give...
متن کاملIdentities for Fibonacci and Lucas Polynomials derived from a book of Gould
This note is dedicated to Professor Gould. The aim is to show how the identities in his book ”Combinatorial Identities” can be used to obtain identities for Fibonacci and Lucas polynomials. In turn these identities allow to derive a wealth of numerical identities for Fibonacci and Lucas numbers.
متن کاملGeneralized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملFibonacci Identities and Graph Colorings
We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.
متن کامل