Neurotrophin-3 induces neural crest-derived cells from fetal rat gut to develop in vitro as neurons or glia.
نویسندگان
چکیده
The precursor cells that form the enteric nervous system (ENS) are multipotent when they arrive in the gut from the neural crest. Their differentiation thus depends on signals from the enteric microenvironment. Crest-derived cells were isolated from the fetal rat bowel by immunoselection at E14 with NC-1/HNK-1 antibodies and secondary antibodies coupled to magnetic beads. NC-1/HNK-1-immunoreactive cells were enriched approximately 36-fold. The NC-1/HNK-1-selected population and the residual population were plated at equal cell density and maintained in a defined medium for 6-7 d. The total number of cells found in the cultures of the residual cells was three- to fourfold that in cultures of immunoselected cells. Neurotrophin-3 (NT-3), but not nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-4/5 (NT-4/5), was found to increase the proportion of neurons (neurofilament-immunoreactive or neuron-specific enolase-immunoreactive) or glia (S-100-immunoreactive) (from 6.6 +/- 0.9% to 15.2 +/- 1.4%; p < 0.001). This effect was concentration dependent (from 1 to 40 ng/ml) and observed only in the cultures of immunoselected cells. NT-3 also enhanced neurite outgrowth. NT-3 increased neither cell number nor bromodeoxyuridine incorporation and thus was not mitogenic. Exposure of immunoselected cells to NT-3 rapidly and transiently induced the appearance of nuclear Fos immunoreactivity. Transcripts coding for TrkC, the transducing receptor for NT-3, were identified in the fetal rat gut (E14-E16) and in the immunoselected population of cells using reverse transcriptase and the polymerase chain reaction. It is concluded that NT-3 specifically promotes the differentiation of enteric crest-derived cells as neurons or glia and may thus play a role in the development and/or maintenance of the ENS.
منابع مشابه
Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture
Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...
متن کاملEvaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture
Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...
متن کاملMultipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture.
The enteric nervous system of vertebrates is derived from neural crest cells that invade the gut wall and generate a highly organised network of enteric ganglia. Among the genes that play an important role in ENS development is c-Ret, mutations of which result in failure of formation of enteric ganglia (intestinal aganglionosis). To further understand the development of the mammalian ENS in gen...
متن کاملIn vivo transplantation of fetal human gut‐derived enteric neural crest cells
The prospect of using neural cell replacement for the treatment of severe enteric neuropathies has seen significant progress in the last decade. The ability to harvest and transplant enteric neural crest cells (ENCCs) that functionally integrate within recipient intestine has recently been confirmed by in vivo murine studies. Although similar cells can be harvested from human fetal and postnata...
متن کاملEmergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract
Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 11 Pt 1 شماره
صفحات -
تاریخ انتشار 1994