Strain stiffening in collagen I networks.
نویسندگان
چکیده
Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain.
منابع مشابه
Size-dependent rheology of type-I collagen networks.
We investigate the system size-dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent o...
متن کاملThe micromechanics of three-dimensional collagen-I gels
We study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained by confocal microscopy and the network geometry is extracted using a 3d network skeletonization algorithm. Each fiber is modeled as a worm-like-chain that resists stretching and ...
متن کاملStrain stiffening in synthetic and biopolymer networks.
Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by she...
متن کاملStress Heterogeneities in Sheared Type-I Collagen Networks Revealed by Boundary Stress Microscopy
Disordered fiber networks provide structural support to a wide range of important materials, and the combination of spatial and dynamic complexity may produce large inhomogeneities in mechanical properties, an effect that is largely unexplored experimentally. In this work, we introduce Boundary Stress Microscopy to quantify the non-uniform surface stresses in sheared collagen gels. We find loca...
متن کاملStrain history dependence of the nonlinear stress response of fibrin and collagen networks.
We show that the nonlinear mechanical response of networks formed from un-cross-linked fibrin or collagen type I continually changes in response to repeated large-strain loading. We demonstrate that this dynamic evolution of the mechanical response arises from a shift of a characteristic nonlinear stress-strain relationship to higher strains. Therefore, the imposed loading does not weaken the u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2013