Loss of Zebrafish Mfrp Causes Nanophthalmia, Hyperopia, and Accumulation of Subretinal Macrophages

نویسندگان

  • Ross F. Collery
  • Peter J. Volberding
  • Jonathan R. Bostrom
  • Brian A. Link
  • Joseph C. Besharse
چکیده

Purpose Mutations in membrane frizzled-related protein (MFRP) are associated with nanophthalmia, hyperopia, foveoschisis, irregular patches of RPE atrophy, and optic disc drusen in humans. Mouse mfrp mutants show retinal degeneration but no change in eye size or refractive state. The goal of this work was to generate zebrafish mutants to investigate the loss of Mfrp on eye size and refractive state, and to characterize other phenotypes observed. Methods Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methods were used to generate multiple frameshift mutations in zebrafish mfrp causing premature translational stops in Mfrp. Spectral-domain optical coherence tomography (SD-OCT) was used to measure eye metrics and refractive state, and immunohistochemistry was used to study adult eyes. Gene expression levels were measured using quantitative PCR. Results Zebrafish Mfrp was shown to localize to apical and basal regions of RPE cells, as well as the ciliary marginal zone. Loss of Mfrp in mutant zebrafish was verified histologically. Zebrafish eyes that were mfrp mutant showed reduced axial length causing hyperopia, RPE folding, and macrophages were observed subretinally. Visual acuity was reduced in mfrp mutant animals. Conclusions Mutation of zebrafish mfrp results in hyperopia with subretinal macrophage infiltration, phenocopying aspects of human and mouse Mfrp deficiency. These mutant zebrafish will be useful in studying the onset and progression of Mfrp-related nanophthalmia, the cues that initiate the recruitment of macrophages, and the mechanisms of Mfrp function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Profiling of Postnatal Mfrprd6 Mutant Eyes Reveals Differential Accumulation of Prss56, Visual Cycle and Phototransduction mRNAs

Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at p...

متن کامل

Evaluation of MFRP as a candidate gene for high hyperopia

PURPOSE Mutations in the membrane-type frizzled-related protein (MFRP) gene have been identified in patients with pathologic high hyperopia associated with nanophthalmos or microphthalmia. This study is to test if a mutation in MFRP is responsible for physiologic high hyperopia. METHODS DNA was prepared from venous leukocytes of 51 patients with physiologic high hyperopia (refraction of spher...

متن کامل

Common MFRP sequence variants are not associated with moderate to high hyperopia, isolated microphthalmia, and high myopia

PURPOSE The membrane-type frizzled-related protein (MFRP) gene is selectively expressed in the retinal pigment epithelium and ciliary body, and mutations of this gene cause nanophthalmos. The MFRP gene may not be essential for retinal function but has been hypothesized to play a role in ocular axial length regulation. The involvement of the MFRP gene in moderate to high hyperopic, isolated micr...

متن کامل

Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein.

Nanophthalmos is a rare disorder of eye development characterized by extreme hyperopia (farsightedness), with refractive error in the range of +8.00 to +25.00 diopters. Because the cornea and lens are normal in size and shape, hyperopia occurs because insufficient growth along the visual axis places these lensing components too close to the retina. Nanophthalmic eyes show considerable thickenin...

متن کامل

Subclinical facioscapulohumeral muscular dystrophy masquerading as bilateral Coats disease in a woman.

is unlikely to be explained on the basis of deep intronic mutations or regulatory element mutations given the normal results of reverse transcription–PCR. Normal reverse transcription–PCR results also rule out the possibility of gene rearrangement as a potential cause. Therefore, the causative mutation must reside in an as yet unannotated gene or intergenic regulatory element within the minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2016