Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting
نویسندگان
چکیده
In [Tei], Teitelbaum formulates a conjecture relating first derivatives of the Mazur– Swinnerton-Dyer p-adic L-functions attached to a modular forms of even weight k ≥ 2 to certain L-invariants arising from Shimura curve parametrisations. This article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension of an imaginary quadratic field. This analogue is then proved by using the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves.
منابع مشابه
TEITELBAUM ’ S EXCEPTIONAL ZERO CONJECTURE IN THE ANTICYCLOTOMIC SETTING By MASSIMO BERTOLINI
Teitelbaum formulated a conjecture relating first derivatives of the Mazur-SwinnertonDyer p-adic L-functions attached to modular forms of even weight k ≥ 2 to certain L-invariants arising from Shimura curve parametrizations. This article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension of an imaginary quad...
متن کاملThe anticyclotomic Main Conjecture for elliptic curves at supersingular primes
The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...
متن کاملOn Anticyclotomic Μ-invariants of Modular Forms
We prove the μ-part of the main conjecture for modular forms along the anticyclotomic Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit formula for the algebraic μ-invariant, and then using results of Ribet and Takahashi showing that our formula agrees with Vatsal’s formula for the analytic μ-invariant.
متن کامل