Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and -independent effects.
نویسندگان
چکیده
Acylcarnitines, important lipid biomarkers reflective of acyl-CoA status, are metabolites that possess bioactive and inflammatory properties. This study examined the potential for long-chain acylcarnitines to activate cellular inflammatory, stress, and death pathways in a skeletal muscle model. Differentiated C2C12 myotubes treated with l-C14, C16, C18, and C18:1 carnitine displayed dose-dependent increases in IL-6 production with a concomitant rise in markers of cell permeability and death, which was not observed for shorter chain lengths. l-C16 carnitine, used as a representative long-chain acylcarnitine at initial extracellular concentrations ≥25 μM, increased IL-6 production 4.1-, 14.9-, and 31.4-fold over vehicle at 25, 50, and 100 μM. Additionally, l-C16 carnitine activated c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase between 2.5- and 11-fold and induced cell injury and death within 6 h with modest activation of the apoptotic caspase-3 protein. l-C16 carnitine rapidly increased intracellular calcium, most clearly by 10 μM, implicating calcium as a potential mechanism for some activities of long-chain acylcarnitines. The intracellular calcium chelator BAPTA-AM blunted l-C16 carnitine-mediated IL-6 production by >65%. However, BAPTA-AM did not attenuate cell permeability and death responses, indicating that these outcomes are calcium independent. The 16-carbon zwitterionic compound amidosulfobetaine-16 qualitatively mimicked the l-C16 carnitine-associated cell stress outcomes, suggesting that the effects of high experimental concentrations of long-chain acylcarnitines are through membrane disruption. Herein, a model is proposed in which acylcarnitine cell membrane interactions take place along a spectrum of cellular concentrations encountered in physiological-to-pathophysiological conditions, thus regulating function of membrane-based systems and impacting cell biology.
منابع مشابه
Long - chain acylcarnitines activate cell stress and myokine release in 1 C 2 C 12 myotubes : calcium - dependent and - independent effects 2 3
Long-chain acylcarnitines activate cell stress and myokine release in 1 C2C12 myotubes: calcium-dependent and -independent effects 2 3 Colin S. McCoin*, Trina A. Knotts*, Kikumi D. Ono-Moore, Pieter J. Oort, Sean H. 4 Adams** 5 6 Molecular, Cellular and Integrative Physiology Graduate Group, University of California, 7 Davis; Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition ...
متن کاملC2C12 Cell Line is a Good Model to Explore the Effects of Herbal Extracts on GLUT4 Expression and Translocation
Objective: GLUT4 is a type of glucose transporter and plays a central role in whole-body metabolism of carbohydrates. The muscle is the major site of GLUT4 and cell line models, to explore GLUT4 behaviors under new therapeutic approach, such as herbal components, should be evaluated. Here, C2C12 cell line is evaluated for GLUT4 translocation from intracellular compartment into the cell membrane...
متن کاملتأثیر عصاره زردچوبه بر جابجایی ناقل غشایی گلوکز، ایزوتایپ IV (Glut4) در سلولهای تمایز یافته C2C12
Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In the present study the antihyperglycemic effect of curcumin was examined using C2C12 myoblast cell...
متن کاملElectric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects
Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stim...
متن کاملKnocking down type 2 but not type 1 calsequestrin reduces calcium sequestration and release in C2C12 skeletal muscle myotubes.
We examined the roles of type 1 and type 2 calsequestrins (CSQ1 and CSQ2) in stored Ca2+ release of C2C12 skeletal muscle myotubes. Transduction of C2C12 myoblasts with CSQ1 or CSQ2 small interfering RNAs effectively reduced the expression of targeted CSQ protein to near undetectable levels. As compared with control infected or CSQ1 knockdown myotubes, CSQ2 and CSQ1/CSQ2 knockdown myotubes had ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 308 11 شماره
صفحات -
تاریخ انتشار 2015