Recalling Holistic Information for Semantic Segmentation
نویسندگان
چکیده
Semantic segmentation requires a detailed labeling of image pixels by object category. Information derived from local image patches is necessary to describe the detailed shape of individual objects. However, this information is ambiguous and can result in noisy labels. Global inference of image content can instead capture the general semantic concepts present. We advocate that high-recall holistic inference of image concepts provides valuable information for detailed pixel labeling. We build a two-stream neural network architecture that facilitates information flow from holistic information to local pixels, while keeping common image features shared among the low-level layers of both the holistic analysis and segmentation branches. We empirically evaluate our network on four standard semantic segmentation datasets. Our network obtains state-of-the-art performance on PASCAL-Context and NYUDv2, and ablation studies verify its effectiveness on ADE20K and SIFTFlow.
منابع مشابه
LabelBank: Revisiting Global Perspectives for Semantic Segmentation
Semantic segmentation requires a detailed labeling of image pixels by object category. Information derived from local image patches is necessary to describe the detailed shape of individual objects. However, this information is ambiguous and can result in noisy labels. Global inference of image content can instead capture the general semantic concepts present. We advocate that holistic inferenc...
متن کاملImage Holistic Scene Understanding Based on Global Contextual Features and Bayesian Topic Model
Image holistic scene understanding based on global contextual features and Bayesian topic model is proposed. The model integrates three basic subtasks: the scene classification, image annotation and semantic segmentation. The model takes full advantage of global feature information in two aspects. On the one side, the performance of image scene classification and image annotation are boosted by...
متن کاملDeep Context Convolutional Neural Networks for Semantic Segmentation
Recent years have witnessed the great progress for semantic segmentation using deep convolutional neural networks (DCNNs). This paper presents a novel fully convolutional network for semantic segmentation using multi-scale contextual convolutional features. Since objects in natural images tend to be with various scales and aspect ratios, capturing the rich contextual information is very critica...
متن کاملImage Holistic Scene Understanding Based on Image Intrinsic Characteristics and Conditional Random Fields
Image holistic scene understanding based on image intrinsic characteristics and conditional random fields is proposed. The model integrates image scene classification, image semantic segmentation and object detection. 1) For the scene classification, we use method of PHOW feature extraction plus KPCA dimensional reduction to obtain feature information for each image. 2) For object detection sec...
متن کاملBayesian non-parametrics for multi-modal segmentation
Segmentation is a fundamental and core problem in computer vision research which has applications in many tasks, such as object recognition, content-based image retrieval, and semantic labelling. To partition the data into groups coherent in one or more characteristics such as semantic classes, is often a first step towards understanding the content of data. As information in the real world is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.08061 شماره
صفحات -
تاریخ انتشار 2016