Multicolor Live-Cell Chemical Imaging by Isotopically Edited Alkyne Vibrational Palette
نویسندگان
چکیده
Vibrational imaging such as Raman microscopy is a powerful technique for visualizing a variety of molecules in live cells and tissues with chemical contrast. Going beyond the conventional label-free modality, recent advance of coupling alkyne vibrational tags with stimulated Raman scattering microscopy paves the way for imaging a wide spectrum of alkyne-labeled small biomolecules with superb sensitivity, specificity, resolution, biocompatibility, and minimal perturbation. Unfortunately, the currently available alkyne tag only processes a single vibrational "color", which prohibits multiplex chemical imaging of small molecules in a way that is being routinely practiced in fluorescence microscopy. Herein we develop a three-color vibrational palette of alkyne tags using a (13)C-based isotopic editing strategy. We first synthesized (13)C isotopologues of EdU, a DNA metabolic reporter, by using the newly developed alkyne cross-metathesis reaction. Consistent with theoretical predictions, the mono-(13)C ((13)C≡(12)C) and bis-(13)C ((13)C≡(13)C) labeled alkyne isotopologues display Raman peaks that are red-shifted and spectrally resolved from the originally unlabeled ((12)C≡(12)C) alkynyl probe. We further demonstrated three-color chemical imaging of nascent DNA, RNA, and newly uptaken fatty-acid in live mammalian cells with a simultaneous treatment of three different isotopically edited alkynyl metabolic reporters. The alkyne vibrational palette presented here thus opens up multicolor imaging of small biomolecules, enlightening a new dimension of chemical imaging.
منابع مشابه
Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes.
We show that single walled carbon nanotubes (SWNTs) with different isotope compositions exhibit distinct Raman G-band peaks and can be used for multiplexed multicolor Raman imaging of biological systems. Cancer cells with specific receptors are selectively labeled with three differently "colored" SWNTs conjugated with various targeting ligands including Herceptin (anti-Her2), Erbitux (anti-Her1...
متن کاملMulticolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator.
Stimulated Raman scattering (SRS) microscopy allows label-free chemical imaging based on vibrational spectroscopy. Narrowband excitation with picosecond lasers creates the highest signal levels and enables imaging speeds up to video-rate, but it sacrifices chemical specificity in samples with overlapping bands compared to broadband (multiplex) excitation. We develop a rapidly tunable picosecond...
متن کاملFluorogenic Probes for Multicolor Imaging in Living Cells.
Here we present a far-red, silicon-rhodamine-based fluorophore (SiR700) for live-cell multicolor imaging. SiR700 has excitation and emission maxima at 690 and 715 nm, respectively. SiR700-based probes for F-actin, microtubules, lysosomes, and SNAP-tag are fluorogenic, cell-permeable, and compatible with superresolution microscopy. In conjunction with probes based on the previously introduced ca...
متن کاملBiomolecular imaging with coherent nonlinear vibrational microscopy.
Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical...
متن کاملLive-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioo...
متن کامل