Relational type-checking for MELL proof-structures. Part 1: Multiplicatives

نویسندگان

  • Giulio Guerrieri
  • Luc Pellissier
  • Lorenzo Tortora de Falco
چکیده

Relational semantics for linear logic is a form of non-idempotent intersection type system, from which several informations on the execution of a proof-structure can be recovered. An element of the relational interpretation of a proof-structure R with conclusion Γ acts thus as a type (refining Γ) having R as an inhabitant. We are interested in the following type-checking question: given a proof-structure R, a list of formulæ Γ, and a point x in the relational interpretation of Γ, is x in the interpretation of R? This question is decidable. We present here an algorithm that decides it in time linear in the size of R, if R is a proof-structure in the multiplicative fragment of linear logic. This algorithm can be extended to larger fragments of multiplicative-exponential linear logic containing λ -calculus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Connected Proof(-Structure)s From Their Taylor Expansion

We show that every connected Multiplicative Exponential Linear Logic (MELL) proof-structure (with or without cuts) is uniquely determined by a well-chosen element of its Taylor expansion: the one obtained by taking two copies of the content of each box. As a consequence, the relational model is injective with respect to connected MELL proof-structures. 1998 ACM Subject Classification F.4.1 Math...

متن کامل

The Relational Model Is Injective for Multiplicative Exponential Linear Logic

We prove a completeness result for Multiplicative Exponential Linear Logic (MELL): we show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination. In the seminal paper by Harvey Friedman [11], it has been shown that equality between simply-typed lambda terms in the full typed structu...

متن کامل

Taylor expansion in linear logic is invertible

Each Multiplicative Exponential Linear Logic (MELL) proof-net can be expanded into a differential net, which is its Taylor expansion. We prove that two different MELL proof-nets have two different Taylor expansions. As a corollary, we prove a completeness result for MELL: We show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relatio...

متن کامل

Correctness of Multiplicative (and Exponential) Proof Structures is NL -Complete

We provide a new correctness criterion for unit-free MLL proof structures and MELL proof structures with units. We prove that deciding the correctness of a MLL and of a MELL proof structure is NL-complete. We also prove that deciding the correctness of an intuitionistic multiplicative essential net is NL-complete.

متن کامل

The Finite Model Property for Various Fragments of Linear Logic

To show that a formula A is not provable in propositional classical logic, it suuces to exhibit a nite boolean model which does not satisfy A. A similar property holds in the intuitionistic case, with Kripke models instead of boolean models (see for instance TvD88]). One says that the propositional classical logic and the propositional intuitionistic logic satisfy a nite model property. In part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.00280  شماره 

صفحات  -

تاریخ انتشار 2016