Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells.

نویسندگان

  • Wei-Zhong Zhu
  • Yiheng Xie
  • Kara White Moyes
  • Joseph D Gold
  • Bardia Askari
  • Michael A Laflamme
چکیده

RATIONALE Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) exhibit either a "working" chamber or a nodal-like phenotype. To generate optimal hESC-CM preparations for eventual clinical application in cell-based therapies, we will need to control their differentiation into these specialized cardiac subtypes. OBJECTIVE To demonstrate intact neuregulin (NRG)-1β/ErbB signaling in hESC-CMs and test the hypothesis that this signaling pathway regulates cardiac subtype abundance in hESC-CM cultures. METHODS AND RESULTS All experiments used hESC-CM cultures generated using our recently reported directed differentiation protocol. To support subsequent action potential phenotyping approaches and provide a higher-throughput method of determining cardiac subtype, we first developed and validated a novel genetic label that identifies nodal-type hESC-CMs. Next, control hESC-CM preparations were compared to those differentiated in the presence of exogenous NRG-1β, an anti-NRG-1β neutralizing antibody, or the ErbB antagonist AG1478. We used 3 independent approaches to determine the ratio of cardiac subtypes in the resultant populations: direct action potential phenotyping under current-clamp, activation of the aforementioned genetic label, and subtype-specific marker expression by RT-PCR. Using all 3 end points, we found that inhibition of NRG-1β/ErbB signaling greatly enhanced the proportion of cells showing the nodal phenotype. CONCLUSIONS NRG-1β/ErbB signaling regulates the ratio of nodal- to working-type cells in differentiating hESC-CM cultures and presumably functions similarly during early human heart development. We speculate that, by manipulating NRG-1β/ErbB signaling, it will be possible to generate preparations of enriched working-type myocytes for infarct repair, or, conversely, nodal cells for potential use in a biological pacemaker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving murine embryonic stem cell differentiation into cardiomyocytes with neuregulin-1: differential expression of microRNA.

Identification of factors that direct embryonic stem (ES) cell (ESC) differentiation into functional cardiomyocytes is essential for successful use of ESC-based therapy for cardiac repair. Neuregulin-1 (NRG1) and microRNA play important roles in the cardiac differentiation of ESCs. Understanding how NRG1 regulates microRNA will provide new mechanistic insights into the role of NRG1 on ESCs. It ...

متن کامل

Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells.

Understanding pathways controlling cardiac development may offer insights that are useful for stem cell-based cardiac repair. Developmental studies indicate that the Wnt/beta-catenin pathway negatively regulates cardiac differentiation, whereas studies with pluripotent embryonal carcinoma cells suggest that this pathway promotes cardiogenesis. This apparent contradiction led us to hypothesize t...

متن کامل

Paving new paths for neuregulin-1-assisted cardiac regenerative medicine. Focus on "Improving murine embryonic stem cell differentiation into cardiomyocytes with neuregulin-1: differential expression of microRNA".

THE PLURICELLULARITY OF THE HEART, allowing an intense communication among cells and cell types in the myocardial tissue, has long been recognized (2). Adaptations within this communication network, mostly between endothelial cells, fibroblasts, and cardiomyocytes, are part of the autoregulatory properties of the heart during its role as the hemodynamic pump in the cardiovascular system, and pa...

متن کامل

The Roles of Neuregulin-1 in Cardiac Development, Homeostasis, and Disease

Neuregulin-1 (NRG-1) and its signaling receptors, erythroblastic leukemia viral oncogene homologs (ErbB) 2, 3, and 4, have been implicated in both cardiomyocyte development and disease, as well as in homeostatic cardiac function. NRG-1/ErbB signaling is involved in a multitude of cardiac processes ranging from myocardial and cardiac conduction system development to angiogenic support of cardiom...

متن کامل

Presenilin-Dependent ErbB4 Nuclear Signaling Regulates the Timing of Astrogenesis in the Developing Brain

Embryonic multipotent neural precursors are exposed to extracellular signals instructing them to adopt different fates, neuronal or glial. However, the mechanisms by which precursors integrate these signals to make timely fate choices remained undefined. Here we show that direct nuclear signaling by a receptor tyrosine kinase inhibits the responses of precursors to astrocyte differentiation fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 107 6  شماره 

صفحات  -

تاریخ انتشار 2010