Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis.
نویسندگان
چکیده
To characterize novel signaling pathways that underlie NAD(P)H oxidase-mediated signaling in atherosclerosis, we first examined differences in thrombin-induced gene expression between wild-type and p47phox(-/-) (NAD[P]H oxidase-deficient) VSMC. Of the 9000 genes analyzed by cDNA microarray method at the G1/S transition point, 76 genes were similarly and significantly modulated in both the cell types, whereas another 22 genes that encompass various functional groups were regulated in NAD(P)H oxidase-dependent manner. Among these 22 genes, thrombin-induced NAD(P)H oxidase-mediated regulation of Klf15, Igbp1, Ak4, Adamts5, Ech1, Serp1, Sec61a2, Aox1, Aoh1, Fxyd5, Rai14, and Serpinh1 was shown for the first time in VSMC. The role of NAD(P)H oxidase in the regulation of a subset of these genes (CD44, BMP4, Id1, and Id3) was confirmed using modulators of reactive oxygen species (ROS) generation, a ROS scavenger and in gain-of-function experiments. We then characterized regulation of these genes in restenosis and atherosclerosis. In both apoE(-/-) mice and in a mouse vascular injury model, these genes are regulated in NAD(P)H oxidase-dependent manner during vascular lesion formation. Based on these findings, we propose that NAD(P)H oxidase-dependent gene expression in general, and the CD44 and BMP4-Id signaling pathway in particular, is important in restenosis and atherosclerosis.
منابع مشابه
NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis.
The intracellular signaling events by which NADPH oxidase-generated reactive oxygen species (ROS) modulate vascular smooth muscle cell (VSMC) function and atherogenesis are yet to be entirely elucidated. We previously demonstrated that NADPH oxidase deficiency decreased atherosclerosis in apoE(-/-) mice and identified adhesion protein CD44 as an important ROS-sensitive gene expressed in VSMC an...
متن کاملStimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo.
Thrombin is a potent vascular smooth muscle cell (VSMC) mitogen. Because recent evidence implicates reactive oxygen intermediates (ROI) in VSMC proliferation in general and atherogenesis in particular, we investigated whether ROI generation is necessary for thrombin-induced mitogenesis. Treatment of human aortic smooth muscle cells with thrombin increased DNA synthesis, an effect that was antag...
متن کاملThe indazole derivative YD-3 inhibits thrombin-induced vascular smooth muscle cell proliferation and attenuates intimal thickening after balloon injury.
Proliferation of vascular smooth muscle cells (VSMCs) is postulated to be one of the key events in the pathogenesis of atherosclerosis and restenosis. We investigated whether YD-3, a lowmolecular weight, non-peptide compound, could modulate proliferation of VSMCs in vitro and restenosis after balloon angioplasty in vivo. We examined the effect of YD-3 on thrombininduced VSMC proliferation by [(...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملReactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β
Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 10 شماره
صفحات -
تاریخ انتشار 2006