Lipoylating and biotinylating enzymes contain a homologous catalytic module.
نویسنده
چکیده
Biotin and lipoic acid moieties are the covalently attached coenzyme cofactors of several multicomponent enzyme complexes that catalyze key metabolic reactions. Attachment of these moieties to the biotinyl- and lipoyl-dependent enzymes is post-translationally catalyzed by specific biotinylating and lipoylating protein enzymes. In Escherichia coli, two different enzymes, LplA and LipB, catalyze independent pathways for the lipoylation of the relevant enzymes, whereas only one enzyme, the BirA protein, is responsible for all the biotinylation. Counterparts of the E. coli BirA, LplA, and LipB enzymes have been previously identified in many organisms, but homology among the three families has never been reported. Computational analysis based on PSI-BLAST profiles and secondary structure predictions indicates, however, that lipoylating and biotinylating enzymes are evolutionarily related protein families containing a homologous catalytic module. Sequence conservation among the three families is very poor, but a single lysine residue is strictly conserved in all of them, which, according to the available X-ray crystal structure of the E. coli BirA protein, is expected to contribute to the binding of lipoic acid in the LplA and LipB enzymes.
منابع مشابه
Two tricks in one bundle: helix-turn-helix gains enzymatic activity.
Many examples of enzymes that have lost their catalytic activity and perform other biological functions are known. The opposite situation is rare. A previously unnoticed structural similarity between the lambda integrase family (Int) proteins and the AraC family of transcriptional activators implies that the Int family evolved by duplication of an ancient DNA-binding homeodomain-like module, wh...
متن کاملStructural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites
NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, a...
متن کاملStructure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes.
DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trime...
متن کاملUnravelling the structure of the pneumococcal autolytic lysozyme.
The LytC lysozyme of Streptococcus pneumoniae forms part of the autolytic system of this important pathogen. This enzyme is composed of a C-terminal CM (catalytic module), belonging to the GH25 family of glycosyl hydrolases, and an N-terminal CBM (choline-binding module), made of eleven homologous repeats, that specifically recognizes the choline residues that are present in pneumococcal teicho...
متن کاملThe binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in beta-glucan binding within family CBM4.
Carbohydrate-binding modules (CBMs) are often part of the complex hydrolytic extracellular enzymes from bacteria and may modulate their catalytic activity. The thermostable catalytic domain of laminarinase Lam16A from Thermotoga neapolitana (glycosyl hydrolase family 16) is flanked by two CBMs, 148 and 161 aa long. They share a sequence identity of 30%, are homologous to family CBM4 and are thu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 9 10 شماره
صفحات -
تاریخ انتشار 2000