Motives over simplicial schemes

نویسندگان

  • VLADIMIR VOEVODSKY
  • V. VOEVODSKY
چکیده

This paper was written as a part of [8] and is intended primarily to provide the definitions and results concerning motives over simplicial schemes, which are used in the proof of the Bloch-Kato conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

And K - Theory

In this paper we show how to write any variety over a field of characteristic zero as the difference of two pure motives, thus answering a question asked by Serre (in arbitrary characteristic, [Se] p.341). The Grothendieck theory of (pure effective Chow) motives starts with the category V of smooth projective varieties over a field k. A motive is a pair (X, p), where X is in V and p is a projec...

متن کامل

Etale Realization on the A-homotopy Theory of Schemes

We compare Friedlander’s definition of étale homotopy for simplicial schemes to another definition involving homotopy colimits of pro-simplicial sets. This can be expressed as a notion of hypercover descent for étale homotopy. We use this result to construct a homotopy invariant functor from the category of simplicial presheaves on the étale site of schemes over S to the category of pro-spaces....

متن کامل

Tensor Structure on Smooth Motives

Grothendieck first defined the notion of a “motif” as a way of finding a universal cohomology theory for algebraic varieties. Although this program has not been realized, Voevodsky has constructed a triangulated category of geometric motives over a perfect field, which has many of the properties expected of the derived category of the conjectural abelian category of motives. The construction of...

متن کامل

Galois theory for motives of niveau ≤ 1

Let T be a Tannakian category over a field k of characteristic 0 and π(T ) its fundamental group. In this paper we prove that there is a bijection between the ⊗-equivalence classes of Tannakian subcategories of T and the normal affine group sub-T -schemes of π(T ). We apply this result to the Tannakian category T1(k) generated by motives of niveau ≤ 1 defined over k, whose fundamental group is ...

متن کامل

Derived Categories of Coherent Sheaves and Motives

The bounded derived category of coherent sheaves D(X) is a natural triangulated category which can be associated with an algebraic variety X. It happens sometimes that two different varieties have equivalent derived categories of coherent sheaves D(X) ≃ D(Y ). There arises a natural question: can one say anything about motives of X and Y in that case? The first such example (see [4]) – abelian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003