Pruning a Lévy continuum random tree

نویسندگان

  • Romain Abraham
  • Jean-François Delmas
  • Guillaume Voisin
چکیده

Given a general critical or sub-critical branching mechanism, we define a pruning procedure of the associated Lévy continuum random tree. This pruning procedure is defined by adding some marks on the tree, using Lévy snake techniques. We then prove that the resulting sub-tree after pruning is still a Lévy continuum random tree. This last result is proved using the exploration process that codes the CRT, a special Markov property and martingale problems for exploration processes. We finally give the joint law under the excursion measure of the lengths of the excursions of the initial exploration process and the pruned one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta-coalescents in continuum Lévy trees

Considering a random binary tree with n labelled leaves, we use a pruning procedure on this tree in order to construct a Beta(3/2, 1/2)coalescent process. We also use the continuous analogue of this construction, i.e. a pruning procedure on Aldous’s continuumrandom tree, to construct a continuous state space process that has the same structure as the beta-coalescent process up to some time chan...

متن کامل

Dislocation measure of the fragmentation of a general Lévy tree

Abstract. Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [3] and for a tree withou...

متن کامل

The Forest Associated with the Record Process on a Lévy Tree

We perform a pruning procedure on a Lévy tree and instead of throwing away the removed sub-tree, we regraft it on a given branch (not related to the Lévy tree). We prove that the tree constructed by regrafting is distributed as the original Lévy tree, generalizing a result of Addario-Berry, Broutin and Holmgren where only Aldous’s tree is considered. As a consequence, we obtain that the “averag...

متن کامل

Record Process on the Continuum Random Tree

Abstract. By considering a continuous pruning procedure on Aldous’s Brownian tree, we construct a random variable Θ which is distributed, conditionally given the tree, according to the probability law introduced by Janson as the limit distribution of the number of cuts needed to isolate the root in a critical Galton-Watson tree. We also prove that this random variable can be obtained as the a.s...

متن کامل

A Construction of a β-Coalescent via the Pruning of Binary Trees

Considering a random binary tree with n labelled leaves, we use a pruning procedure on this tree in order to construct a β( 3 2 , 1 2 )-coalescent process. We also use the continuous analogue of this construction, i.e. a pruning procedure on Aldous’s continuum random tree, to construct a continuous state space process that has the same structure as the β-coalescent process up to some time chang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010