Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
نویسندگان
چکیده
We used a combination of high-speed 3-D kinematics and three-axis accelerometer recordings obtained from cockatiels flying in a low-turbulence wind tunnel to characterize the instantaneous accelerations and, by extension, the net aerodynamic forces produced throughout the wingbeat cycle across a broad range of flight speeds (1-13 m s(-1)). Our goals were to investigate the variation in instantaneous aerodynamic force production during the wingbeat cycle of birds flying across a range of steady speeds, testing two predictions regarding aerodynamic force generation in upstroke and the commonly held assumption that all of the kinetic energy imparted to the wings of a bird in flapping flight is recovered as useful aerodynamic work. We found that cockatiels produce only a limited amount of lift during upstroke (14% of downstroke lift) at slower flight speeds (1-3 m s(-1)). Upstroke lift at intermediate flight speeds (7-11 m s(-1)) was moderate, averaging 39% of downstroke lift. Instantaneous aerodynamic forces were greatest near mid-downstroke. At the end of each half-stroke, during wing turnaround, aerodynamic forces were minimal, but inertial forces created by wing motion were large. However, we found that the inertial power requirements of downstroke (minimum of 0.29+/-0.10 W at 7 m s(-1) and maximum of 0.56+/-0.13 W at 1 m s(-1)) were consistent with the assumption that nearly all wing kinetic energy in downstroke was applied to the production of aerodynamic forces and therefore should not be added separately to the overall power cost of flight. The inertial power requirements of upstroke (minimum of 0.16+/-0.04 W at 7 m s(-1) and maximum of 0.35+/-0.11 W at 1 m s(-1)) cannot be recovered in a similar manner, but their magnitude was such that the power requirements for the upstroke musculature (minimum of 54+/-13 W kg(-1) at 7 m s(-1) and maximum of 122+/-35 W at 1 m s(-1)) fall within the established range for cockatiel flight muscle (<185 W kg(-1)).
منابع مشابه
How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds.
The avian pectoralis muscle must produce a varying mechanical power output to achieve flight across a range of speeds (1-13 m s(-1)). We used the natural variation in the power requirements with flight speed to investigate the mechanisms employed by cockatiels (Nymphicus hollandicus) to modulate muscle power output. We found that pectoralis contractile function in cockatiels was generally conse...
متن کاملEstimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).
Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed w...
متن کاملThe energy cost of loaded flight is substantially lower than expected due to alterations in flight kinematics.
The effect of experimentally increased wing loading on the energy cost of flight was examined in cockatiels Nyphicus hollandicus. Five individuals were flown for periods of approximately 2 min, while carrying additional payload mass amounting to between 5 and 20% of unloaded body mass. The energy cost of flight was measured using the 13C-labelled bicarbonate technique, which was also calibrated...
متن کاملExploring the cockatiel (Nymphicus hollandicus) fecal microbiome, bacterial inhabitants of a worldwide pet
BACKGROUND Cockatiels (Nymphicus hollandicus) were originally endemic to Australia; now they are popular pets with a global distribution. It is now possible to conduct detailed molecular studies on cultivable and uncultivable bacteria that are part of the intestinal microbiome of healthy animals. These studies show that bacteria are an essential part of the metabolic capacity of animals. There ...
متن کاملKinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae
The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 10 شماره
صفحات -
تاریخ انتشار 2004