Custom designed nanocrystalline Li2MSiO4/reduced graphene oxide (M = Fe, Mn) formulations as high capacity cathodes for rechargeable lithium batteries.
نویسندگان
چکیده
Nanocrystalline Li2MSiO4 (M = Fe, Mn) particles embedded between in situ formed rGO sheets are obtained by adopting customized solvothermal synthesis. An appreciable room temperature specific capacity of 149 mA h g(-1) with 89% capacity retention and 210 mA h g(-1) with 87% retention have been exhibited by Li2FeSiO4/rGO and Li2MnSiO4/rGO composites, corresponding to the participation of close to one and more than one lithium per formula unit respectively. The formation of nanocrystalline Li2MSiO4 (M = Fe, Mn) compounds in the desired phase and the complete wrapping of orthosilicates with rGO sheets are believed to be responsible for the excellent electrochemical behavior of the orthosilicate cathodes of the present study to best suit with requirements of rechargeable lithium-ion batteries. The abundant availability and eco-benignity advantages of Fe and Mn are valuable additions in the consideration of Li2MSiO4/rGO (M = Fe, Mn) cathodes as sustainable potential candidates.
منابع مشابه
Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage.
Although lithium ion batteries have gained commercial success owing to their high energy density, they lack suitable electrodes capable of rapid charging and discharging to enable a high power density critical for broad applications. Here, we demonstrate a simple bottom-up approach toward single crystalline vanadium oxide (VO2) ribbons with graphene layers. The unique structure of VO2-graphene ...
متن کاملIn situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries.
We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries.
متن کاملHigh Capacity, Temperature-Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries
Manganese oxides are of great interest as low cost and environmentally sound intercalation cathodes for rechargeable lithium batteries, but have suffered from limited capacity and instability upon cycling at the moderately high temperatures (50-70°C) encountered in many applications. Here, we show that LixAl0.05Mn0.95O2 of both the monoclinic and orthorhombic ordered rock salt structures exhibi...
متن کاملA Comparative Spectroscopic Study of Graphene - coated vs Pristine Li ( Mn , Ni , Co ) Oxide Materials for Lithium - ion Battery Cathodes
The structural properties of pristine and graphene-coated Li(Li0.2Mn0.54Ni0.13Co0.13)O2 materials were studied by the spectroscopic methods, such as Raman spectroscopy, FTIR, and synchrotron XAS. The result from Raman spectroscopy implies that the graphene coating may suppress the monoclinic phase in the pristine material and thus lead to improved stability of the cathode. The combined analyses...
متن کاملEco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries
This study describes the synthesis of nitrogen-containing carbon (N-C) and an approach to apply the N-C material as a surface encapsulant of LiMn2O4 (LMO) cathode material. The N heteroatoms in the N-C material improve the electrochemical performance of LMO. A low-cost wet coating method was used to prepare N-C@LMO particles. The N-C@LMO was characterized by X-ray diffraction (XRD), X-ray photo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 43 48 شماره
صفحات -
تاریخ انتشار 2014