Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations

نویسندگان

  • Oscar P. Bruno
  • Tim Elling
  • Randy C. Paffenroth
  • Catalin Turc
چکیده

We present a new class of integral equations for the solution of problems of scattering of electromagnetic fields by perfectly conducting bodies. Like the classical Combined Field Integral Equation (CFIE), our formulation results from a representation of the scattered field as a combination of magneticand electric-dipole distributions on the surface of the scatterer. In contrast with the classical equations, however, the electric-dipole operator we use contains a regularizing operator; we call the resulting equations Regularized Combined Field Integral Equations (CFIE-R). Unlike the CFIE, the CFIE-R are Fredholm equations which, we show, are uniquely solvable; our selection of coupling parameters, further, yields CFIE-R operators with excellent spectral distributions—with closely clustered eigenvalues—so that small numbers of iterations suffice to solve the corresponding equations by means of Krylov subspace iterative solvers such as GMRES. The regularizing operators are constructed on the basis of the single layer operator, and can thus be incorporated easily within any existing surface integral equation implementation for the solution of the classical CFIE. We present one such methodology: a high-order Nyström approach based on use of partitions of unity and trapezoidal-rule integration. A variety of numerical results demonstrate very significant gains in computational costs that can result from the new formulations, for a given accuracy, over those arising from previous approaches. ! 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral equations requiring small numbers of Krylov-subspace iterations for two-dimensional penetrable scattering problems

This paper presents a class of boundary integral equations for the solution of problems of electromagnetic and acoustic scattering by two dimensional homogeneous penetrable scatterers with smooth boundaries. The new integral equations, which, as is established in this paper, are uniquely solvable Fredholm equations of the second kind, result from representations of fields as combinations of sin...

متن کامل

Fast, High-Order, Well-Conditioned Algorithms for the Solution of Three-Dimensional Acoustic and Electromagnetic Scattering Problems

We present a novel computational methodology based on Nyström discretizations to produce fast and very accurate solutions of acoustic and electromagnetic problems in small numbers of Krylov-subspace iterative solvers. At the heart of our approach are integral equation formulations that exhibit excellent spectral properties. In the case of scattering from perfectly conducting structures, and jus...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners

We present several well-posed, well-conditioned integral equation formulations for the solution of two-dimensional acoustic scattering problems with Neumann boundary conditions in domains with corners. We call these integral equations Direct Regularized Combined Field Integral Equations (DCFIE-R) formulations because (1) they consist of combinations of direct boundary integral equations of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009