A Note on Jacquet Functors and Ordinary Parts

نویسنده

  • CLAUS SORENSEN
چکیده

In this note we relate Emerton’s Jacquet functor JP to his ordinary parts functor OrdP , by computing the χ-eigenspaces Ord χ P for central characters χ. This fills a small gap in the literature. One consequence is a weak adjunction property for unitary characters χ appearing in JP , with potential applications to local-global compatibility in the p-adic Langlands program in the ordinary case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on regular and coregular sequences

Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.

متن کامل

Representations of Reductive Groups

This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...

متن کامل

Affine Jacquet Functors and Harish-chandra Categories

We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...

متن کامل

On Bernstein’s Presentation of Iwahori-hecke Algebras and Representations of Split Reductive Groups over Non-archimedean Local Fields

This article gives conceptual statements and proofs relating parabolic induction and Jacquet functors on split reductive groups over a nonArchimedean local field to the associated Iwahori-Hecke algebra as tensoring from and restricting to parabolic subalgebras. The main tool is Bernstein’s presentation of the Iwahori-Hecke algebra.

متن کامل

Emerton’s Jacquet Functors for Non-Borel Parabolic Subgroups

This paper studies Emerton’s Jacquet module functor for locally analytic representations of p-adic reductive groups, introduced in [Eme06a]. When P is a parabolic subgroup whose Levi factor M is not commutative, we show that passing to an isotypical subspace for the derived subgroup ofM gives rise to essentially admissible locally analytic representations of the torus Z(M), which have a natural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015