A Note on Jacquet Functors and Ordinary Parts
نویسنده
چکیده
In this note we relate Emerton’s Jacquet functor JP to his ordinary parts functor OrdP , by computing the χ-eigenspaces Ord χ P for central characters χ. This fills a small gap in the literature. One consequence is a weak adjunction property for unitary characters χ appearing in JP , with potential applications to local-global compatibility in the p-adic Langlands program in the ordinary case.
منابع مشابه
Note on regular and coregular sequences
Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.
متن کاملRepresentations of Reductive Groups
This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...
متن کاملAffine Jacquet Functors and Harish-chandra Categories
We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...
متن کاملOn Bernstein’s Presentation of Iwahori-hecke Algebras and Representations of Split Reductive Groups over Non-archimedean Local Fields
This article gives conceptual statements and proofs relating parabolic induction and Jacquet functors on split reductive groups over a nonArchimedean local field to the associated Iwahori-Hecke algebra as tensoring from and restricting to parabolic subalgebras. The main tool is Bernstein’s presentation of the Iwahori-Hecke algebra.
متن کاملEmerton’s Jacquet Functors for Non-Borel Parabolic Subgroups
This paper studies Emerton’s Jacquet module functor for locally analytic representations of p-adic reductive groups, introduced in [Eme06a]. When P is a parabolic subgroup whose Levi factor M is not commutative, we show that passing to an isotypical subspace for the derived subgroup ofM gives rise to essentially admissible locally analytic representations of the torus Z(M), which have a natural...
متن کامل