Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed
نویسندگان
چکیده
Titanium dioxide (TiO2) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CFexp) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min-1; DF, 0.4 ml min-1; Ft, 5 min; and CFexp, 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated.
منابع مشابه
The comparison of the apoptosis effects of titanium dioxide nanoparticles into MDA-MB-231 cell line in microgravity and gravity conditions
Objective (s): Gravity could affect some system features and perform directly as an organizing field factor. Recent investigations have examined the titanium dioxide nanoparticles (TiO2 NPs) in biomedical applications, mostly in the cancer treatment field. This study aimed to evaluate the effects of simulated microgravity combined with TiO2 NPs in MDA-MB-231 cells proliferation for the first tim...
متن کاملNumerical Simulation of Blood Flow Mixed with Magnetic Nanoparticles under the Influence of AC and DC Magnetic Field
Nanoparticles combined with magnetic fields are one of the most important research areas in the field of biomedical engineering. Direct Current (DC) magnetic and Alternative Current (AC) magnetic fields are often used for controlling nanoparticles. It is also used for hyperthermia treatment. The purpose of the current study is to investigate the effect of DC and AC magnetic field on nanoparticl...
متن کاملInfluence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms
The influence of nanofluid with different wave forms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The ex...
متن کاملIn-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.
Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles ...
متن کاملRoom-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared at room temperature and characterized for the purpose of biomedical applications. The particles were synthesized by the hydrolysis of tetramethyl orthosilicate (TMOS) in alcohol media under catalysis by ammonia, and their size can range from about 50-350 nm in diameter. We studied the particle size...
متن کامل