Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

نویسندگان

  • Casper Steinmann
  • Dmitri G. Fedorov
  • Jan H. Jensen
چکیده

We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be [Formula: see text] kcal mol(-1) for MP2/cc-pVDZ and [Formula: see text] for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ab initio and chemical shielding tensors calculations for Nucleotide 5’-Monophosphates in the Gas phase

Structural and magnetic properties of purine and pyrimidine nucleotides (CMP, UMP, dTMP, AMP, GMP, IMP) were studied at different levels of ab initio molecular orbital theory. These calculations were performed at the hartree-fock level and density functional B3LYP methods. Geometries were fully optimized by following Cs symmetry restrictions. The standard 6-31G** basis set which includes polari...

متن کامل

The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds

We extend the effective fragment molecular orbital method (EFMO) into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtaine...

متن کامل

Biomolecular calculations based on electron-correlated fragment molecular orbital methods

Kitaura et al. [1] have proposed an ab initio FMO method by which large molecules such as proteins and nucleic acids can be easily treated with chemical accuracy. In the ab initio FMO method, a molecule or a molecular cluster is divided into fragments, and the MO calculations on the fragments (monomers) and the fragment pairs (dimers) are performed to obtain the total energy that is expressed a...

متن کامل

An ab initio study of metalated CMP,UMP& dTMP at HF level:Bond energies and isotropic NMR shielding of atoms

The interaction of Magnesium hydrate at the phosphate oxygen atom of the pyrimidine nucleotides (CMP,UMP,dTMP) were studied at the Hartree-Fock level Theory. We used LANL2DZ basis set for Mg and 6-31g* basis set for atoms.The basis set superposition error (BSSE) begins to converge for used Method/basis set. The gauge-invariant atomic orbital (GIAO) method and the continuous-set-of-gauge-transfo...

متن کامل

Predicting shielding constants in solution using gauge invariant atomic orbital theory and the effective fragment potential method.

A method to approximate ab initio shielding constants is presented, in which the ab initio density matrix is replaced in the gauge invariant atomic orbital formalism with the density matrix resulting from an effective fragment potential calculation. The resulting first-order density matrix is then iterated to self-consistency. The method is compared with fully ab initio gauge invariant atomic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013