A Six Nuclear Gene Phylogeny of Citrus (Rutaceae) Taking into Account Hybridization and Lineage Sorting

نویسندگان

  • Chandrika Ramadugu
  • Bernard E. Pfeil
  • Manjunath L. Keremane
  • Richard F. Lee
  • Ivan J. Maureira-Butler
  • Mikeal L. Roose
چکیده

BACKGROUND Genus Citrus (Rutaceae) comprises many important cultivated species that generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4-12 Ma), incomplete lineage sorting of ancestral polymorphisms is also likely to cause discrepancies among genes in phylogenetic inferences. Incongruence of gene trees is observed and it is essential to unravel the processes that cause inconsistencies in order to understand the phylogenetic relationships among the species. METHODOLOGY AND PRINCIPAL FINDINGS (1) We generated phylogenetic trees using haplotype sequences of six low copy nuclear genes. (2) Published simple sequence repeat data were re-analyzed to study population structure and the results were compared with the phylogenetic trees constructed using sequence data and coalescence simulations. (3) To distinguish between hybridization and incomplete lineage sorting, we developed and utilized a coalescence simulation approach. In other studies, species trees have been inferred despite the possibility of hybridization having occurred and used to generate null distributions of the effect of lineage sorting alone (by coalescent simulation). Since this is problematic, we instead generate these distributions directly from observed gene trees. Of the six trees generated, we used the most resolved three to detect hybrids. We found that 11 of 33 samples appear to be affected by historical hybridization. Analysis of the remaining three genes supported the conclusions from the hybrid detection test. CONCLUSIONS We have identified or confirmed probable hybrid origins for several Citrus cultivars using three different approaches-gene phylogenies, population structure analysis and coalescence simulation. Hybridization and incomplete lineage sorting were identified primarily based on differences among gene phylogenies with reference to null expectations via coalescence simulations. We conclude that identifying hybridization as a frequent cause of incongruence among gene trees is critical to correctly infer the phylogeny among species of Citrus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taxonomy and Phylogeny of the Genus Citrus Based on the Nuclear Ribosomal Dna Its Region Sequence

The genus Citrus (Aurantioideae, Rutaceae) is the sole source of the citrus fruits of commerce showing high economic values. In this study, the taxonomy and phylogeny of Citrus species is evaluated using sequence analysis of the ITS region of nrDNA. This study is based on 26 plants materials belonging to 22 Citrus species having wild, domesticated, and cultivated species. Through DNA alignment ...

متن کامل

Phylogeny estimation of the radiation of western North American chipmunks (Tamias) in the face of introgression using reproductive protein genes.

The causes and consequences of rapid radiations are major unresolved issues in evolutionary biology. This is in part because phylogeny estimation is confounded by processes such as stochastic lineage sorting and hybridization. Because these processes are expected to be heterogeneous across the genome, comparison among marker classes may provide a means of disentangling these elements. Here we u...

متن کامل

Bears in a Forest of Gene Trees: Phylogenetic Inference Is Complicated by Incomplete Lineage Sorting and Gene Flow

Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and ...

متن کامل

Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations.

Understanding recent speciation history requires merging phylogenetic and population genetics approaches, taking into account the persistence of ancestral polymorphism and possible introgression. The emergence of a clear phylogeny of hares (genus Lepus) has been hampered by poor genomic sampling and possible occurrence of mitochondrial DNA (mtDNA) introgression from the arctic/boreal Lepus timi...

متن کامل

Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent

The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013