Predicting local SR Ca(2+) dynamics during Ca(2+) wave propagation in ventricular myocytes.

نویسندگان

  • Hena R Ramay
  • M Saleet Jafri
  • W Jonathan Lederer
  • Eric A Sobie
چکیده

Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca(2+)) wave propagation, and 2), speed of Ca(2+) diffusion within the SR. Ca(2+) waves are initiated when a spontaneous local SR Ca(2+) release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca(2+) diffusion constant in the SR (D(Ca,SR)) severely complicates our understanding of whether dynamic local changes in SR [Ca(2+)] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca(2+)] during Ca(2+) waves. Simulations have investigated how dynamic local changes in SR [Ca(2+)] are influenced by 1), D(Ca,SR); 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca(2+) pumps; 4), SR Ca(2+) pump dependence on cytosolic [Ca(2+)]; and 5), the rate of transfer between network and junctional SR. Of these factors, D(Ca,SR) is the primary determinant of how release from one RyR cluster alters SR [Ca(2+)] in nearby regions. Specifically, our results show that local increases in SR [Ca(2+)] ahead of the wave can potentially facilitate Ca(2+) wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca(2+)] are possible during SR Ca(2+)release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca(2+)](SR).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pacing-Induced Non-Uniform Ca2+ Dynamics in Rat Atria Revealed by Rapid-Scanning Confocal Microscopy

Intracellular Ca(2+) ([Ca(2+)]i) dynamics in isolated myocytes differ between the atria and ventricles due to the distinct t-tubular distributions. Although cellular aspects of ventricular [Ca(2+)]i dynamics in the heart have been extensively studied, little is known about those of atrial myocytes in situ. Here we visualized precise [Ca(2+)]i dynamics of atrial myocytes in Langendorff-perfused ...

متن کامل

Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans.

The aim of this work was to investigate whether beat-to-beat alternation in the amplitude of the systolic Ca(2+) transient (Ca(2+) alternans) is due to changes of sarcoplasmic reticulum (SR) Ca(2+) content, and if so, whether the alternans arises due to a change in the gain of the feedback controlling SR Ca(2+) content. We found that, in rat ventricular myocytes, stimulating with small (20 mV) ...

متن کامل

Computational modelling of the initiation and development of spontaneous intracellular Ca2+ waves in ventricular myocytes.

Intracellular Ca(2+) dynamics provides excitation-contraction coupling in cardiac myocytes. Under pathological conditions, spontaneous Ca(2+) release events can lead to intracellular Ca(2+) travelling waves, which can break, giving transitory or persistent intracellular re-entrant Ca(2+) scroll waves. Intracellular Ca(2+) waves can trigger cellular delayed after-depolarizations of membrane pote...

متن کامل

Luminal Ca(2+) content regulates intracellular Ca(2+) release in subepicardial myocytes of intact beating mouse hearts: effect of exogenous buffers.

Ca(+)-induced Ca(2+) release tightly controls the function of ventricular cardiac myocytes under normal and pathological conditions. Two major factors contributing to the regulation of Ca(2+) release are the cytosolic free Ca(2+) concentration and sarcoplasmic reticulum (SR) Ca(2+) content. We hypothesized that the amount of Ca(2+) released from the SR during each heart beat strongly defines th...

متن کامل

Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+.

In heart muscle the amplification and shaping of Ca(2+) signals governing contraction are orchestrated by recruiting a variable number of Ca(2+) sparks. Sparks reflect Ca(2+) release from the sarcoplasmic reticulum (SR) via Ca(2+) release channels (ryanodine receptors, RyRs). RyRs are activated by Ca(2+) influx via L-type Ca(2+) channels with a specific probability that may depend on regulatory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 98 11  شماره 

صفحات  -

تاریخ انتشار 2010