Numerical observation of non-axisymmetric vesicles in fluid membranes

نویسنده

  • Yan Jie
چکیده

By means of Surface Evolver (Exp. Math,1,141 1992), a software package of bruteforce energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable. PACS numbers: 87. 22. Bt, 62. 20. Dc, 02. 60. -x Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical study of flow field and heat transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall

In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...

متن کامل

A fast algorithm for simulating vesicle flows in three dimensions

Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we extend “A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows”, Veerapaneni et al. Journal of Computational Physics, 228(19), 2009 to general non-axisymmetric vesicle flows in three dimensions. Although the main components of the algorithm are similar in ...

متن کامل

Numerical Simulation of Non-Newtonian Inelastic Flows in Channel based on Artificial Compressibility Method

In this study, inelastic constitutive modelling is considered for the simulation of shear-thinning fluids through a circular channel. Numerical solutions are presented for power-law inelastic model, considering axisymmetric Poiseuille flow through a channel. The numerical simulation of such fluid is performed by using the Galerkin finite element approach based on artificial compression method (...

متن کامل

Shapes of nearly cylindrical, axisymmetric bilayer membranes

Shapes of nearly cylindrical sections of axisymmetric phospholipid membranes are studied theoretically. Describing the shape of such sections by their deviation from a reference cylinder, the wellestablished shape equation for axisymmetric bilayer membranes is expanded in terms of this deviation, and it is then solved analytically. The phase diagram shows the resulting stationary shapes as func...

متن کامل

A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

We extend “A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D”, Veerapaneni et al. Journal of Computational Physics, 228(7), 2009 to the case of three dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008