Texture feature standardization in digital mammography for improving generalizability across devices
نویسندگان
چکیده
Growing evidence suggests a relationship between mammographic texture and breast cancer risk. For studies performing texture analysis on digital mammography (DM) images from various DM systems, it is important to evaluate if different systems could introduce inherent differences in the images analyzed and how to construct a methodological framework to identify and standardize such effects, if these differences exist. In this study, we compared two DM systems, the GE Senographe 2000D and DS using a validated physical breast phantom (Rachel, Gammex). The GE 2000D and DS systems use the same detector, but a different automated exposure control (AEC) system, resulting in differences in dose performance. On each system, images of the phantom are acquired five times in the Cranio-Caudal (CC) view with the same clinically optimized phototimer setting. Three classes of texture features, namely grey-level histogram, cooccurrence, and run-length texture features (a total of 26 features), are generated within the breast region from the raw DM images and compared between the two imaging systems. To alleviate system effects, a range of standardization steps are applied to the feature extraction process: z-score normalization is performed as the initial step to standardize image intensities, and the parameters in generating co-occurrence features are varied to decrease system differences introduced by detector blurring effects. To identify texture features robust to detectors (i.e. the ones minimally affected only by electronic noise), the distribution of each texture feature is compared between the two systems using the Kolmogorov-Smirnov (K-S) test at 0.05 significance, where features with p>0.05 are deemed robust to inherent system differences. Our approach could provide a basis for texture feature standardization across different DM imaging systems and provide a systematic methodology for selecting generalizable texture descriptors in breast cancer risk assessment.
منابع مشابه
Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.
An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run leng...
متن کاملTexture Analysis of Mammographic images
Breast cancer is the most common type of cancer among women in the world. Mammography is regarded as an effective tool for early detection and diagnosis of breast cancer. Microcalcification is one of the primary signs of breast cancer. There are various image texture analysis techniques for the detection of the microcalcifications. Screenfilm mammography is still the standard method used to det...
متن کاملTexture Analysis of Mammographic images
Breast cancer is the most common type of cancer among women in the world. Mammography is regarded as an effective tool for early detection and diagnosis of breast cancer. Microcalcification is one of the primary signs of breast cancer. There are various image texture analysis techniques for the detection of the microcalcifications. Screen-film mammography is still the standard method used to de...
متن کاملBreast dose in conventional and digital mamography
Introduction: The amount of doses received in mammography is one of the biggest concerns in the world. According to some statistics, every 12 minutes a woman dies due to breast cancer. Mammography concerned to detect breast cancer at an early stage of the disease as well as for screening, however due to the risk of exposure, the increasingly and widespread use of mammography fo...
متن کاملAnalysis of parenchymal texture with digital breast tomosynthesis: comparison with digital mammography and implications for cancer risk assessment.
PURPOSE To correlate the parenchymal texture features at digital breast tomosynthesis (DBT) and digital mammography with breast percent density (PD), an established breast cancer risk factor, in a screening population of women. MATERIALS AND METHODS This HIPAA-compliant study was approved by the institutional review board. Bilateral DBT images and digital mammograms from 71 women (mean age, 5...
متن کامل