Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases.
نویسندگان
چکیده
d- and l-captopril are competitive inhibitors of metallo-beta-lactamases. For the enzymes from Bacillus cereus (BcII) and Aeromonas hydrophila (CphA), we found that the mononuclear enzymes are the favored targets for inhibition. By combining results from extended x-ray absorption fine structure, perturbed angular correlation of gamma-rays spectroscopy, and a study of metal ion binding, we derived that for Cd(II)1-BcII, the thiolate sulfur of d-captopril binds to the metal ion located at the site defined by three histidine ligand residues. This is also the case for the inhibited Co(II)1 and Co(II)2 enzymes as observed by UV-visible spectroscopy. Although the single metal ion in Cd(II)1-BcII is distributed between both available binding sites in both the uninhibited and the inhibited enzyme, Cd(II)1-CphA shows only one defined ligand geometry with the thiolate sulfur coordinating to the metal ion in the site composed of 1 Cys, 1 His, and 1 Asp. CphA shows a strong preference for d-captopril, which is also reflected in a very rigid structure of the complex as determined by perturbed angular correlation spectroscopy. For BcII and CphA, which are representatives of the metallo-beta-lactamase subclasses B1 and B2, we find two different inhibitor binding modes.
منابع مشابه
فراوانی اینتگرونهای کلاس I و II در ایزولههای بالینی سودوموناس آئروژینوزا مولد متالوبتالاکتاماز
Background and Objective: Pseudomonas aeruginosa is an opportunistic nosocomial pathogen. Evidence suggests that the incidence of enzyme-producing strains of Pseudomonas aeruginosa Metalo Beta Lactamases (MBL) is a major problem in the treatment of infections caused by this organism. The aim of this study was to investigate the frequency of class I and II integrons among metalobetalactamase pro...
متن کاملInsight into the mechanism of the IMP-1 metallo-beta-lactamase by molecular dynamics simulations.
Two models, a purely nonbonded model and a cationic dummy atom approach, were examined for the modeling of the binuclear zinc-containing IMP-1 metallo-beta-lactamase in complex with a mercaptocarboxylate inhibitor. The cationic dummy atom approach had substantial advantages as it maintained the initial, experimentally determined geometry of the metal-containing active site during molecular dyna...
متن کاملThe Mechanisms of Catalysis by Metallo β-Lactamases
Class B beta-lactamases or metallo-beta-lactamases (MBLs) require zinc ions to catalyse the hydrolysis of beta-lactam antibiotics such as penicillins, cephalosporins, carbapenems, and cephamycins. There are no clinically useful inhibitors against MBLs which are responsible for the resistance of some bacteria to antibiotics. There are two metal-ion binding sites that have different zinc ligands ...
متن کاملStructural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers
β-Lactams are the most successful antibacterials, but their effectiveness is threatened by resistance, most importantly by production of serine- and metallo-β-lactamases (MBLs). MBLs are of increasing concern because they catalyze the hydrolysis of almost all β-lactam antibiotics, including recent-generation carbapenems. Clinically useful serine-β-lactamase inhibitors have been developed, but s...
متن کاملتشخیص متالوبتالاکتامازها، بتالاکتامازهای با طیف وسیع و پورینهای غشاء خارجی در ایزولههای کلبسیلا پنومونیه جدا شده از بیماران بستری در بیمارستانهای شهر تهران
Background and Objective: Klebsiella pneumoniae is one of the most important causative agents both in form of hospital acquired and community-acquired infections. This bacterium is one of the most prevalent pathogens that is isolated from hospitals and is associated with high mortality rates. The uprising trend of multi drug resistance among Klebsiella pneumoniae has limited the treatment optio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 23 شماره
صفحات -
تاریخ انتشار 2003