Harmless Delays in a Discrete Ratio-dependent Periodic Predator-prey System
نویسندگان
چکیده
Verifiable criteria are established for the existence of positive periodic solutions and permanence of a delayed discrete periodic predator-prey model with Holling-type II functional response N1(k + 1) = N1(k)exp{b1(k)− a1(k)N1(k− [τ1])− α1(k)N2(k)/(N1(k) + m(k)N2(k))} and N2(k + 1) = N2(k)exp{−b2(k) + α2(k)N1(k − [τ2])/(N1(k − [τ2]) + m(k)N2(k− [τ2]))}. Our results show that the delays in the system are harmless for the existence of positive periodic solutions and permanence of the system. In particular our investigation confirms that if the death rate of the predator is rather small as well as the intrinsic growth rate of the prey is relatively large, then the species could coexist in the long run.
منابع مشابه
Prey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملPeriodic Solutions and Stability for a Delayed Discrete Ratio-dependent Predator-prey System with Holling-type Functional Response
The existence of positive periodic solutions for a delayed discrete predator-prey model with Holling-type-III functional responseN1(k+1)=N1(k)exp{b1(k)−a1(k)N1(k− [τ1]) −α1(k)N1(k)N2(k)/(N 1 (k) +m2N 2 (k))}, N2(k + 1) = N2(k)exp{−b2(k) + α2(k)N 1 (k − [τ2])/(N 1 (k − [τ2]) + m2N 2 (k − [τ2]))} is established by using the coincidence degree theory. We also present sufficient conditions for the ...
متن کاملExistence of Periodic Solutions for a Delayed Ratio-Dependent Three-Species Predator-Prey Diffusion System on Time Scales
This paper investigates the existence of periodic solutions of a ratio-dependent predator-prey diffusion system with Michaelis-Menten functional responses and time delays in a two-patch environment on time scales. By using a continuation theorem based on coincidence degree theory, we obtain suffcient criteria for the existence of periodic solutions for the system. Moreover, when the time scale ...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملThreshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کامل