Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase.

نویسندگان

  • Seiji Ueda
  • Seiya Kato
  • Hidehiro Matsuoka
  • Masumi Kimoto
  • Seiya Okuda
  • Minoru Morimatsu
  • Tsutomu Imaizumi
چکیده

In response to vascular insults, inflammatory cytokines stimulate vascular smooth muscle cells (SMCs) to express an inducible isoform of nitric oxide synthase (iNOS). Asymmetric dimethylarginine (ADMA), an endogenous NO synthase inhibitor, is metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To determine whether the ADMA-DDAH system regulates cytokine-induced NO production, cultured rat SMCs were exposed to interleukin-1beta (IL-1beta). IL-1beta (1 to 100 U/mL) dose-dependently stimulated not only iNOS but also DDAH expression and enzyme activity, accompanied by an increase in NO metabolite and by a decrease in ADMA content in culture media. A DDAH inhibitor (4124W, 5 mmol/L) augmented ADMA production (P<0.01) and decreased NO synthesis (P<0.01) in IL-1beta-stimulated SMCs. On the other hand, an adenovirus-mediated overexpression of DDAH reduced ADMA and enhanced NO production. Exogenous administration of NO donors (SNAP and SIN-1) dose-dependently increased NO metabolite in the culture media but had no effect on ADMA. Our results indicate two mechanisms of IL-1beta-induced NO synthesis: the direct stimulation of the expression of iNOS and the indirect stimulation of iNOS activity by upregulating DDAH and reducing ADMA. The ADMA-DDAH system may be another regulatory mechanism of inflammation-mediated NO production for human vascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Dimethylarginine dimethylaminohydrolase 2 regulates nitric oxide synthesis and hemodynamics and determines outcome in polymicrobial sepsis.

OBJECTIVE Nitric oxide is a key to numerous physiological and pathophysiological processes. Nitric oxide production is regulated endogenously by 2 methylarginines, asymmetric dimethylarginine (ADMA) and monomethyl-L-arginine. The enzyme that specifically metabolizes asymmetric dimethylarginine and monomethyl-L-arginine is dimethylarginine dimethylaminohydrolase (DDAH). The first isoform dimethy...

متن کامل

all-trans-Retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase.

all-trans-Retinoic acid (atRA) has important effects on the developing and mature cardiovascular system. Nitric oxide (NO) production has been associated with the atRA-induced differentiation of neuronal cells, and we hypothesized that NO may also mediate certain actions of atRA in the cardiovascular system. We studied the effects of atRA on NO production by endothelial cells and determined whe...

متن کامل

Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development.

Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the...

متن کامل

Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase.

BACKGROUND An endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), is elevated in patients with type 2 diabetes mellitus (DM). This study explored the mechanisms by which ADMA becomes elevated in DM. METHODS AND RESULTS Male Sprague-Dawley rats were fed normal chow or high-fat diet (n=5 in each) with moderate streptozotocin injection to induce type 2 DM. Plasma A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2003