Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability.
نویسندگان
چکیده
This study investigates the effect on: (1) the bulk surface and (2) the three-dimensional non-woven microfabric scaffolds of poly(N-isopropylacrylamide)-CNT-polyaniline on growth and viability of cells. The poly(N-isopropylacrylamide)-CNT-polyaniline was prepared using coupling chemistry and electrospinning was then used for the fabrication of responsive, non-woven microfabric scaffolds. The electrospun microfabrics were assembled in regular three-dimensional scaffolds with OD: 400-500 μm; L: 6-20 cm. Mice fibroblast cells L929 were seeded on the both poly(N-isopropylacrylamide)-CNT-polyaniline bulk surface as well as non-woven microfabric scaffolds. Excellent cell proliferation and viability was observed on poly(N-isopropylacrylamide)-CNT-polyaniline non-woven microfabric matrices in compare to poly(N-isopropylacrylamide)-CNT-polyaniline bulk and commercially available Matrigel™ even with a range of cell lines up to 168 h. Temperature dependent cells detachment behavior was observed on the poly(N-isopropylacrylamide)-CNT-polyaniline scaffolds by varying incubation at below lower critical solution temperature of poly(N-isopropylacrylamide). The results suggest that poly(N-isopropylacrylamide)-CNT-polyaniline non-woven microfabrics could be used as a smart matrices for applications in tissue engineering.
منابع مشابه
3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملThe Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering
Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...
متن کاملProtocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration.
It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(...
متن کاملEvaluation of morphology and cell behaviour of a novel synthesized electrospun poly(vinyl pyrrolidone)/poly(vinyl alcohol)/hydroxyapatite nanofibers
Objective(s): Three-dimensional structures such as nanofibrous scaffolds are being used in biomedical engineering as well as provide a site for cells to attach and proliferate leading to tissue formation. In the present study, poly(vinyl pyrrolidone) (PVP)/ poly(vinyl alcohol)(PVA) hybrid nanofibrous scaffold was synthesized by electrospinning. Materials and Methods: The effect of adding nano h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2013