Timing analysis including clock skew

نویسندگان

  • David L. Harris
  • Mark Horowitz
  • Dean Liu
چکیده

Clock skew is an increasing concern for high-speed circuit designers. Circuit designers use transparent latches and skew-tolerant domino circuits to hide clock skew from the critical path and take advantage of shared portions of the clock network to budget less skew between nearby elements than across the entire die, but current timing analysis algorithms do not handle correlated clock skews. This paper extends the Sakallah–Mudge–Olukotun (SMO) latch-based timing analysis to include different amounts of clock skew between different elements. The key change is that departure times from each latch must be defined with respect to launching clocks so that the skew between the launching and receiving clocks can be determined at each receiver. The exact analysis leads to an explosion in the number of timing constraints, but most constraints are not tight in practical situations and a modified version of the Szymanski–Shenoy relaxation algorithm gives exact results with only a small increase in runtime. The timing analysis formulation also captures the effects of skew on edge-triggered flip-flops, domino circuits, and min-delay constraints. Our exact algorithm, applied to a supercomputer node controller with over 12 000 clocked elements, finds the system can run 50–90 ps faster than a single skew analysis would predict and requires searching fewer than 4% more latch departures than conventional algorithms. With the less conservative skew budgets enabled by better timing analysis, we expect clocked systems will remain viable to multiGHz frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timing-driven variation-aware synthesis of hybrid mesh/tree clock distribution networks

Clock skew variations adversely affect timing margins, limiting performance, reducing yield, and may also lead to functional faults. Non-tree clock distribution networks, such as meshes and crosslinks, are employed to reduce skew and also to mitigate skew variations. These networks, however, increase the dissipated power while consuming significant metal resources. Several methods have been pro...

متن کامل

Statistical Timing Analysis Considering Clock Jitter and Skew due to Power Supply Noise and Process Variation

Clock driver suffers from delay variation due to manufacturing and environmental variabilities as well as combinational cells. The delay variation causes clock skew and jitter, and varies both setup and hold timing margins. This paper presents a timing verification method that takes into consideration delay variation inside a clock network due to both manufacturing variability and dynamic power...

متن کامل

Optimizing Clock Skew Schedules Under Normal Process Variation

Statistical timing techniques are used to quantify the effects of process variation on performance and yield. Applied to analysis, they have been successful in reducing the overconservatism in traditional worst-case methods; applied to optimization, they can produce circuits with better performance under process variation. In this paper, we examine the problem of variation-aware clock skew sche...

متن کامل

Clock Distribution Networks in Synchronous Digital Integrated Circuits

Clock distribution networks synchronize the flow of data signals among synchronous data paths. The design of these networks can dramatically affect system-wide performance and reliability. A theoretical background of clock skew is provided in order to better understand how clock distribution networks interact with data paths. Minimum and maximum timing constraints are developed from the relativ...

متن کامل

A Clock-Gating Method for Low-Power LSI Design

This paper describes an automated layout design technique for the gated-clock design. Two issues must be considered for gated-clock circuits to work correctly. One is to minimize the skew for gated-clock nets. The other is to keep timing constraints for enable-logic parts. We propose the layout design technique to taking these things into consideration. We developed GatedClock Tree Synthesizer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. on CAD of Integrated Circuits and Systems

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1999