Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin
نویسندگان
چکیده
The bacterial toxin pneumolysin is released as a soluble monomer that kills target cells by assembling into large oligomeric rings and forming pores in cholesterol-containing membranes. Using cryo-EM and image processing, we have determined the structures of membrane-surface bound (prepore) and inserted-pore oligomer forms, providing a direct observation of the conformational transition into the pore form of a cholesterol-dependent cytolysin. In the pore structure, the domains of the monomer separate and double over into an arch, forming a wall sealing the bilayer around the pore. This transformation is accomplished by substantial refolding of two of the four protein domains along with deformation of the membrane. Extension of protein density into the bilayer supports earlier predictions that the protein inserts beta hairpins into the membrane. With an oligomer size of up to 44 subunits in the pore, this assembly creates a transmembrane channel 260 A in diameter lined by 176 beta strands.
منابع مشابه
Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin.
Pneumolysin, a major virulence factor of the human pathogen Streptococcus pneumoniae, is a soluble protein that disrupts cholesterol-containing membranes of cells by forming ring-shaped oligomers. Magic angle spinning and wideline static (31)P NMR have been used in combination with freeze-fracture electron microscopy to investigate the effect of pneumolysin on fully hydrated model membranes con...
متن کاملHow cholesterol-dependent cytolysins bite holes into membranes.
In a show piece for electron microscopy (EM), Tilley at al. used single-particle cryo-EM to visualize the structural rearrangements in the bacterial toxin pneumolysin that occur when it assembles into a membrane-associated prepore and when the prepore subsequently transitions into a fully membrane-inserted pore.
متن کاملTwo Structural Transitions in Membrane Pore Formation by Pneumolysin, the Pore-Forming Toxin of Streptococcus pneumoniae
The human pathogen Streptococcus pneumoniae produces soluble pneumolysin monomers that bind host cell membranes to form ring-shaped, oligomeric pores. We have determined three-dimensional structures of a helical oligomer of pneumolysin and of a membrane-bound ring form by cryo-electron microscopy. Fitting the four domains from the crystal structure of the closely related perfringolysin reveals ...
متن کاملCrystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation
Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a majo...
متن کاملBacterial pore-forming cytolysins induce neuronal damage in a rat model of neonatal meningitis.
BACKGROUND Group B Streptococcus (GBS) and Streptococcus pneumoniae (SP) are leading causes of bacterial meningitis in neonates and children. Each pathogen produces a pore-forming cytolytic toxin, β-hemolysin/cytolysin (β-h/c) by GBS and pneumolysin by SP. The aim of this study was to understand the role of these pore-forming cytotoxins, in particular of the GBS β-h/c, as potential neurotoxins ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 121 شماره
صفحات -
تاریخ انتشار 2005