Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption.

نویسندگان

  • Debbie Tam
  • Rommel G Tirona
  • K Sandy Pang
چکیده

Recently, a physiologically-based, segregated flow model that incorporates separate intestinal tissue and flow to both a nonabsorptive and an absorptive outermost layer (enterocytes) was shown to better describe the observations on route-dependent morphine glucuronidation in the rat small intestine than a traditional physiologically-based model. These theoretical models were expanded, as the segmental segregated flow model and the segmental traditional model, to view the intestine as three segments of equal lengths receiving equal flows to accommodate heterogeneities in segmental transporter and metabolic functions. The influence of heterogeneity in absorptive, exsorptive, and metabolic functions on drug clearance, bioavailability (F), and metabolite formation after intravenous and oral dosing was examined for the intestine when the tissue was the only organ of removal. Simulations were performed for first-order conditions, when drug partitioned readily (flow-limited distribution) or less readily (membrane-limited distribution) into intestinal tissue, and for different gastrointestinal transit times. The intestinal clearance was found to be inversely related to the rate constant for absorption of a drug that was subjected to secretion and was positively correlated with the metabolic and secretory intrinsic clearances. F was positively correlated with the absorption rate constant but was inversely related to the metabolic and secretory intrinsic clearances. The gastrointestinal transit time decreased metabolite formation, increased clearance, and decreased F. The simulations further showed that a descending metabolic intrinsic clearance yielded a lower F and an ascending segmental distribution of metabolic intrinsic clearance yielded a higher F.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells.

Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to characterize better available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine intestine, human intestine, and Caco-2 cells. We therefore determined the absolute protein expressi...

متن کامل

An Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line

The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...

متن کامل

Inhibitory effect of clemastine on P-glycoprotein expression and function: an in vitro and in situ study

Objective(s):Transporters have an important role in pharmacokinetics of drugs. Inhibition or induction of drug transporters activity can affect drug absorption, safety, and efficacy. P-glycoprotein (P-gp) is the most important membrane transporter that is responsible for active efflux of drugs. It is important to understand which drugs are substrates, inhibitors, or inducers of P-gp to minimize...

متن کامل

An Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line

The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...

متن کامل

The Influence of Intestinal Tract and Probiotics on the Fate of Orally Administered Drugs.

Although the liver has long been considered as a main organ responsible for drug metabolism, the role of the gut metabolizing enzymes and the gut microflora is becoming more profoundly evident in drug metabolism, absorption and overall efficacy. This review will explore various mechanisms by which the gut-microflora influences drug pharmacokinetics including biotransformation, bioactivation, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2003