Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?
نویسندگان
چکیده
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
منابع مشابه
Induction of protective immunity against malaria by priming-boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii.
We immunized mice with an attenuated (cold-adapted) influenza virus followed by an attenuated vaccinia virus (modified vaccinia virus Ankara), both expressing a CD8(+)-T-cell epitope derived from malaria sporozoites. This vaccination regimen elicited high levels of protection against malaria. This is the first time that the vaccine efficacy of a recombinant cold-adapted influenza virus vector e...
متن کاملCross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines.
Recombinant vaccines based on modified vaccinia virus Ankara (MVA) have an excellent record concerning safety and immunogenicity and are currently being evaluated in numerous clinical studies for immunotherapy of infectious diseases and cancer. However, knowledge about the biological properties of target antigens to efficiently induce MVA vaccine-mediated immunity in vivo is sparse. Here, we ex...
متن کاملEnvironmental Risk Assessment of Clinical Trials Involving Modified Vaccinia Virus Ankara (MVA)-Based Vectors
The modified vaccinia virus Ankara (MVA) strain, which has been developed as a vaccine against smallpox, is since the nineties widely tested in clinical trials as recombinant vector for vaccination or gene therapy applications. Although MVA is renowned for its safety, several biosafety aspects need to be considered when performing the risk assessment of a recombinant MVA (rMVA). This paper pres...
متن کاملTransient host range selection for genetic engineering of modified vaccinia virus Ankara.
Recombinant vaccinia viruses are extremely valuable tools for research in molecular biology and immunology. The extension of vaccinia vector technology to replication-deficient and safety-tested virus strains such as modified vaccinia virus Ankara (MVA) have made this versatile eukaryotic expression system even more attractive for basic and clinical research. Here, we report on easily obtaining...
متن کامل