Candidate genes in the regulation of Na+ transport by inner medullary collecting duct cells from Dahl rats.

نویسندگان

  • R F Husted
  • J P Rapp
  • J B Stokes
چکیده

Recently, we reported that primary cultures of inner medullary collecting duct cells from Dahl salt-sensitive (S) rats absorb more Na+ than do cells cultured from Dahl salt-resistant (R) rats. To begin to evaluate the molecular basis for this difference, we selected four candidate gene products that on the basis of their physiology and genetics could participate in regulation of Na+ transport by these cells. During 24-hour exposure, inhibitors of the cytochrome P450 enzymes had no effect on Na+ transport by either S or R monolayers. Twenty-four-hour exposure to NG-monomethyl-L-arginine (0.5 mmol/L), a nonspecific inhibitor of NO synthase, also had no effect on Na+ transport by either S or R monolayers. Neither atrial natriuretic peptide 1-28 (100 nmol/L) nor 8-Br-cyclic GMP (100 micromol/L) had any short-term effect on Na+ transport by either S or R monolayers. 18-Hydroxy-11-deoxycorticosterone (100 nmol/L), an adrenocorticoid hormone that is produced in greater amounts in S rats, stimulated Na+ transport by both S and R monolayers via the mineralocorticoid receptor; however, its effect was less potent than aldosterone. Congenic rats in which the R isoform of the 11beta-hydroxylase gene was bred onto the S background had monolayers that transported Na+ at a rate similar to the S rats. These results demonstrate that neither cytochrome P450 genes, NO synthase genes, the atrial natriuretic peptide receptor gene, nor the 11beta-hydroxylase gene is a likely candidate to explain the difference in Na+ transport between S and R inner medullary collecting duct monolayers in primary culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased collecting duct urea transporter expression in Dahl salt-sensitive rats.

Because abnormalities of inner medullary function have been proposed in Dahl salt-sensitive (DS) rats vs. salt-resistant (DR) rats, we performed transporter profiling by semiquantitative immunoblotting to determine whether specific solute transporter abundances are altered in inner medullas of DS rats vs. DR rats. Although none of the expressed Na transporters were upregulated in the inner medu...

متن کامل

Na channel expression and activity in the medullary collecting duct of rat kidney.

The expression and activity of epithelial Na(+) channels (ENaC) in the medullary collecting duct of the rat kidney were examined using a combination of whole cell patch-clamp measurements of amiloride-sensitive currents (I(Na)) in split-open tubules and Western blot analysis of alpha-, beta-, and gamma-ENaC proteins. In the outer medullary collecting duct, amiloride-sensitive currents were unde...

متن کامل

NBCn1 is a basolateral Na+-HCO3- cotransporter in rat kidney inner medullary collecting ducts.

Primary cultures of rat inner medullary collecting duct (IMCD) cells Na(+) dependently import HCO(3)(-) across the basolateral membrane through an undefined transport protein. We used RT-PCR, immunoblotting, and immunohistochemistry to identify candidate proteins for this basolateral Na(+)-HCO(3)(-) cotransport. The mRNA encoding the electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1 was detect...

متن کامل

Medullary collecting-duct function in antidiuretic and in salt- or water-diuretic rats.

SONNENBERG, H. Medullary collecting-duct function in antidiuretic and in saltor water-diuretic rats. Am. J. Physiol. 226(3): 501-506. 1974.-Microcatheterization of the medullary collecting duct of adult rats was used to study the contribution of water, sodium, and potassium transport in this nephron segment to urinary excretion. In antidiuresis medullary reabsorption of fluid and sodium was 50/...

متن کامل

Apical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3).

The collecting duct is the primary site of urinary ammonia secretion; the current study determines whether apical ammonia transport in the mouse inner medullary collecting duct cell (mIMCD-3) occurs via nonionic diffusion or a transporter-mediated process and, if the latter, presents the characteristics of this apical ammonia transport. We used confluent cells on permeable support membranes and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 1998