Constraint Satisfaction Problems for Reducts of Homogeneous Graphs
نویسندگان
چکیده
For n ≥ 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Γ with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Γ is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
Reducts of Ramsey structures
One way of studying a relational structure is to investigate functions which are related to that structure and which leave certain aspects of the structure invariant. Examples are the automorphism group, the self-embedding monoid, the endomorphism monoid, or the polymorphism clone of a structure. Such functions can be particularly well understood when the relational structure is countably infin...
متن کاملComplexity Classification in Infinite-Domain Constraint Satisfaction
appeared in the proceedings of ICDT’10. [44] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. In Proceedings of CSL, pages 44–57, Vienna, 2003. [45] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation, 16(3):359–373, 2006. [46] M. Bodirsky and D. Piguet. Finite trees are Ramsey with...
متن کاملEquations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures
There exist two conjectures for constraint satisfaction problems (CSPs) of reducts of finitely bounded homogeneous structures: the first one states that tractability of the CSP of such a structure is, when the structure is a model-complete core, equivalent to its polymorphism clone satisfying a certain non-trivial linear identity modulo outer embeddings. The second conjecture, challenging the a...
متن کاملA Complexity Dichotomy for Poset Constraint Satisfaction
We determine the complexity of all constraint satisfaction problems over partial orders, in particular we show that every such problem is NP-complete or can be solved in polynomial time. This result generalises the complexity dichotomy for temporal constraint satisfaction problems by Bodirsky and Kára. We apply the so called universal-algebraic approach together with tools from model theory and...
متن کاملThe Complexity of Phylogeny Constraint Satisfaction
We systematically study the computational complexity of a broad class of computational problems in phylogenetic reconstruction. The class contains for example the rooted triple consistency problem, forbidden subtree problems, the quartet consistency problem, and many other problems studied in the bioinformatics literature. The studied problems can be described as constraint satisfaction problem...
متن کامل