Analyses on the finite difference method by Gibou et al. for Poisson equation

نویسندگان

  • Gang-Joon Yoon
  • Chohong Min
چکیده

Article history: Received 5 June 2014 Received in revised form 11 September 2014 Accepted 12 September 2014 Available online 22 September 2014

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the performance of a simple parallel implementation of the ILU-PCG for the Poisson equation on irregular domains

We report on the performance of a parallel algorithm for solving the Poisson equation on irregular domains. We use the spatial discretization of Gibou et al. (2002) [6] for the Poisson equation with Dirichlet boundary conditions, while we use a finite volume discretization for imposing Neumann boundary conditions (Ng et al., 2009; Purvis and Burkhalter, 1979) [8,10]. The parallelization algorit...

متن کامل

A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids

We present an unconditionally stable second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive Cartesian grids. We employ quadtree and octree data structures as an efficient means to represent the grid. We use the supra-convergent Poisson solver of [C.-H. Min, F. Gibou, H. Ceniceros, A supra-convergent finite difference scheme for the variable...

متن کامل

Semiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...

متن کامل

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations

We present a solver for the Poisson-Boltzmann equation and demonstrate its applicability for biomolecular electrostatics computation. The solver uses a level set framework to represent sharp, complex interfaces in a simple and robust manner. It also uses non-graded, adaptive octree grids which, in comparison to uniform grids, drastically decrease memory usage and runtime without sacrificing acc...

متن کامل

A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids

Keywords: Level set method Epitaxial growth Diffusion Stefan problem Sharp interface Robin boundary condition a b s t r a c t We present a numerical method for simulating diffusion dominated phenomena on irregular domains and free moving boundaries with Robin boundary conditions on quadtree/ octree adaptive meshes. In particular, we use a hybrid finite-difference and finite-volume framework tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 280  شماره 

صفحات  -

تاریخ انتشار 2015