Variable Step-size Selection Methods for Implicit Integration Schemes for Odes
نویسنده
چکیده
Implicit integration schemes for ODEs, such as Runge-Kutta and Runge-Kutta-Nyström methods, are widely used in mathematics and engineering to numerically solve ordinary differential equations. Every integration method requires one to choose a step-size, h, for the integration. If h is too large or too small the efficiency of an implicit scheme is relatively low. As every implicit integration scheme has a global error inherent to the scheme, we choose the total number of computations in order to achieve a prescribed global error as a measure of efficiency of the integration scheme. In this paper, we propose the idea of choosing h by minimizing an efficiency function for general Runge-Kutta and Runge-Kutta-Nyström integration routines. This efficiency function is the critical component in making these methods variable step-size methods. We also investigate solving the intermediate stage values of these routines using both Newton’s method and Picard iteration. We then show the efficacy of this approach on some standard problems found in the literature, including a well-known stiff system.
منابع مشابه
On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملAccuracy of Decoupled Implicit Integration Formulas
Dynamical systems can often be decomposed into loosely coupled subsystems. The system of ordinary differential equations (ODEs) modelling such a problem can then be partitioned corresponding to the subsystems, and the loose couplings can be exploited by special integration methods to solve the problem using a parallel computer or just solve the problem more efficiently than by standard methods....
متن کاملTwo Point Fully Implicit Block Direct Integration Variable Step Method for Solving Higher Order System of Ordinary Differential Equations
Two point fully implicit block method of variable step size is developed for solving directly the second order system of Ordinary Differential Equations (ODEs). This method will estimate the solutions of Initial Value Problems (IVPs) at two points simultaneously. The method developed is suitable for the numerical integration of non stiff and mildly stiff differential systems. Numerical results ...
متن کاملComparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...
متن کاملA Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods
This paper revisits the Taylor method for the numerical integration of initial value problems of Ordinary Differential Equations (ODEs). The main goal is to show that the Taylor method can be competitive, both in speed and accuracy, with the standard methods. To this end, we present a computer program that outputs an specific numerical integrator for a given set of ODEs. The generated code incl...
متن کامل