Codon Optimization OnLine (COOL): a web-based multi-objective optimization platform for synthetic gene design
نویسندگان
چکیده
SUMMARY Codon optimization has been widely used for designing synthetic genes to improve their expression in heterologous host organisms. However, most of the existing codon optimization tools consider a single design criterion and/or implement a rather rigid user interface to yield only one optimal sequence, which may not be the best solution. Hence, we have developed Codon Optimization OnLine (COOL), which is the first web tool that provides the multi-objective codon optimization functionality to aid systematic synthetic gene design. COOL supports a simple and flexible interface for customizing various codon optimization parameters such as codon adaptation index, individual codon usage and codon pairing. In addition, users can visualize and compare the optimal synthetic sequences with respect to various fitness measures. User-defined DNA sequences can also be compared against the COOL optimized sequences to show the extent by which the user's sequences can be further improved. AVAILABILITY AND IMPLEMENTATION COOL is free to academic and non-commercial users and licensed to others for a fee by the National University of Singapore. Accessible at http://bioinfo.bti.a-star.edu.sg/COOL/ CONTACT: [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
EuGene: maximizing synthetic gene design for heterologous expression
UNLABELLED Numerous software applications exist to deal with synthetic gene design, granting the field of heterologous expression a significant support. However, their dispersion requires the access to different tools and online services in order to complete one single project. Analyzing codon usage, calculating codon adaptation index (CAI), aligning orthologs and optimizing genes are just a fe...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملMulti-objective Optimization of web profile of railway wheel using Bi-directional Evolutionary Structural Optimization
In this paper, multi-objective optimization of railway wheel web profile using bidirectional evolutionary structural optimization (BESO) algorithm is investigated. Using a finite element software, static analysis of the wheel based on a standard load case, and its modal analysis for finding the fundamental natural frequency is performed. The von Mises stress and critical frequency as the proble...
متن کاملAnt Colony Optimization for Multi-objective Digital Convergent Product Network
Convergent product is an assembly shape concept integrating functions and sub-functions to form a final product. To conceptualize the convergent product problem, a web-based network is considered in which a collection of base functions and sub-functions configure the nodes and each arc in the network is considered to be a link between two nodes. The aim is to find an optimal tree of functionali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 30 15 شماره
صفحات -
تاریخ انتشار 2014