Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma

نویسندگان

  • Shuqun Yang
  • Chonglin Luo
  • Qingyang Gu
  • Qiang Xu
  • Guan Wang
  • Hongye Sun
  • Ziliang Qian
  • Yexiong Tan
  • Yuxin Qin
  • Yuhong Shen
  • Xiaowei Xu
  • Shu-Hui Chen
  • Chi-Chung Chan
  • Hongyang Wang
  • Mao Mao
  • Douglas D. Fang
چکیده

Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore,the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line

Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...

متن کامل

Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors.

The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mu...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.

We have recently reported inactivation of the tyrosine phosphatase PTPN2 (also known as TC-PTP) through deletion of the entire gene locus in ∼ 6% of T-cell acute lymphoblastic leukemia (T-ALL) cases. T-ALL is an aggressive disease of the thymocytes characterized by the stepwise accumulation of chromosomal abnormalities and gene mutations. In the present study, we confirmed the strong associatio...

متن کامل

JAK-STAT in lymphoproliferative disorders

In the early 1990’s several groups were searching for the molecular basis of the signal transduction triggered by the engagement of plasma membrane receptors. The laboratories of Darnell, Kerr and Stark were first to identify proteins, which acted as intermediaries in interferon (IFN) signaling, known as the signal transducer and activator of transcription (STAT). At the same time, the work of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016