Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting.

نویسندگان

  • A Michael Tabony
  • Tadashi Yoshida
  • Sarah Galvez
  • Yusuke Higashi
  • Sergiy Sukhanov
  • Bysani Chandrasekar
  • William E Mitch
  • Patrice Delafontaine
چکیده

Congestive heart failure and chronic kidney disease are characterized by chronically elevated angiotensin II (Ang II) and muscle wasting. Ang II causes skeletal muscle wasting by reducing appetite and by enhancing catabolism. The serine/threonine kinase AMP-activated protein kinase (AMPK) functions mainly as a sensor of cellular energy status. It is energy sparing and favors ATP generation. We hypothesized that Ang II induces muscle wasting in part by inhibiting AMPK signaling and altering cellular energy balance. Our results show that Ang II infusion in mice reduced gastrocnemius muscle weight by 26% and depleted ATP by 74%. In addition, Ang II upregulated protein phosphatase 2Cα by 2.6-fold and reduced AMPK phosphorylation and signaling in muscle. Importantly, the pharmacological AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside restored AMPK activity to levels of pair-fed controls and reversed Ang II-mediated ATP depletion and muscle wasting. Moreover, 5-aminoimidazole-4-carboxamide ribonucleoside activated Akt and inhibited Ang II-induced increases in E3 ubiquitin ligase expression. These novel results demonstrate critical roles for energy depletion and AMPK inhibition in Ang II-induced skeletal muscle wasting and suggest a therapeutic potential for AMPK activators in diseases characterized by muscle wasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of Cachexia in Chronic Disease States.

Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many chronic diseases, such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF or CKD often have increased...

متن کامل

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis.

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status switch regulating several systems including glucose and lipid metabolism. Recently, AMPK has been implicated in the control of skeletal muscle mass by decreasing mTORC1 activity and increasing protein degradation through regulation of ubiquitin-proteasome and autophagy pa...

متن کامل

Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II

BACKGROUND Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3. OBJECTIVE Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacol...

متن کامل

Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression.

RATIONALE Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin-angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 (MuRF1) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 2011