Learning with Local and Global Consistency

نویسندگان

  • Dengyong Zhou
  • Olivier Bousquet
  • Thomas Navin Lal
  • Jason Weston
  • Bernhard Schölkopf
چکیده

We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

Combining Active Learning and Semi-supervised Learning Using Local and Global Consistency

Semi-supervised learning and active learning are important techniques to solve the shortage of labeled examples. In this paper, a novel active learning algorithm combining semi-supervised Learning with Local and Global Consistency (LLGC) is proposed. It selects the example that can minimize the estimated expected classification risk for labeling. Then, a better classifier can be trained with la...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Consistent Image Analogies using Semi-supervised Learning

In this paper we study the following problem: given two source images A and A′, and a target image B, can we learn to synthesize a new image B′ which relates to B in the same way that A′ relates to A? We propose an algorithm which a) uses a semi-supervised component to exploit the fact that the target image B is available apriori, b) uses inference on a Markov Random Field (MRF) to ensure globa...

متن کامل

Dirichlet Process Mixtures of Generalized Linear Models

We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM produces a global model of the joint distribution through a mixture of local generalized linear models. DP-GLMs allow both continuous and categorical inputs, and can model the same class of responses that can be mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003