Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum.

نویسندگان

  • I Hamza
  • Z Qi
  • N D King
  • M R O'Brian
چکیده

Bradyrhizobium japonicum expresses both Fur and Irr, proteins that mediate iron-dependent regulation of gene expression. Control of irr mRNA accumulation by iron was aberrant in a fur mutant strain, and Fur repressed an irr::lacZ promoter fusion in the presence of iron. Furthermore, metal-dependent binding of Fur to an irr gene promoter was demonstrated in a region with no significant similarity to the Fur-binding consensus DNA element. These data suggest that the modest control of irr transcription by iron is mediated by Fur. However, Irr protein levels were regulated normally by iron in the fur strain, indicating that Fur is not required for post-transcriptional control of the irr gene. Accordingly, regulation of hemB, a haem biosynthesis gene regulated by Irr, was controlled normally by iron in a fur strain. In addition, the hemA gene was shown to be controlled by Fur, but not by Irr. It was concluded that Fur cannot be the only protein by which B. japonicum cells sense and respond to iron, and that Irr may be involved in Fur-independent signal transduction. Furthermore, iron-dependent regulation of haem biosynthesis involves both Irr and Fur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a functional fur gene in Bradyrhizobium japonicum.

The recent identification of the iron response regulator (Irr) in Bradyrhizobium japonicum raised the question of whether the global regulator Fur is present in that organism. A fur gene homolog was isolated by the functional complementation of an Escherichia coli fur mutant. The B. japonicum Fur bound to a Fur box DNA element in vitro, and a fur mutant grown in iron-replete medium was derepres...

متن کامل

Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism

The Irr protein from the bacterium Bradyrhizobium japonicum is expressed under iron limitation to mediate iron control of haem biosynthesis. The regulatory input to Irr is the status of haem and its precursors iron and protoporphyrin at the site of haem synthesis. Here, we show that Irr controls the expression of iron transport genes and many other iron-regulated genes not directly involved in ...

متن کامل

A dominant-negative fur mutation in Bradyrhizobium japonicum.

In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. ...

متن کامل

The Bradyrhizobium japonicum Irr protein is a transcriptional repressor with high-affinity DNA-binding activity.

The Irr protein is a global regulator of iron homeostasis in Bradyrhizobium japonicum, and a subset of genes within the Irr regulon are negatively controlled under iron limitation. However, repressor function, high-affinity DNA binding in vitro, or promoter occupancy in vivo of Irr for a negatively regulated gene has not been demonstrated. Here, we show that the blr7895 and bll6680 genes are ne...

متن کامل

Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.

Ferric siderophore receptors are components of high-affinity iron-chelate transport systems in gram-negative bacteria. The genes encoding these receptors are generally regulated by repression. Here, we show that the ferrichrome receptor gene bll4920 and four additional putative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by the regulatory protein Irr,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 146 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 2000