Stable chloroplast transformation of the unicellular red alga Porphyridium species.

نویسندگان

  • Miri Lapidot
  • Dina Raveh
  • Alex Sivan
  • Shoshana Malis Arad
  • Michal Shapira
چکیده

Red algae are extremely attractive for biotechnology because they synthesize accessory photosynthetic pigments (phycobilins and carotenoids), unsaturated fatty acids, and unique cell wall sulfated polysaccharides. We report a high-efficiency chloroplast transformation system for the unicellular red microalga Porphyridium sp. This is the first genetic transformation system for Rhodophytes and is based on use of a mutant form of the gene encoding acetohydroxyacid synthase [AHAS(W492S)] as a dominant selectable marker. AHAS is the target enzyme of the herbicide sulfometuron methyl, which effectively inhibits growth of bacteria, fungi, plants, and algae. Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies. The mutant AHAS gene integrated into the chloroplast genome by homologous recombination. This system paves the way for expression of foreign genes in red algae and has important biotechnological implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between the Unicellular Red Alga Porphyridium sp. and Its Predator, the Dinoflagellate Gymnodinium sp.

Contamination of algae cultivated outdoors by various microorganisms, such as bacteria, fungi, algae, and protozoa, can affect growth and product quality, sometimes causing fast collapse of the cultures. The main contaminant of Porphyridium cultures grown outdoors in Israel is a Gymnodinium sp., a dinoflagellate that feeds on the alga. Comparison of the effects of various environmental conditio...

متن کامل

FRAP Analysis on Red Alga Reveals the Fluorescence Recovery Is Ascribed to Intrinsic Photoprocesses of Phycobilisomes than Large-Scale Diffusion

BACKGROUND Phycobilisomes (PBsomes) are the extrinsic antenna complexes upon the photosynthetic membranes in red algae and most cyanobacteria. The PBsomes in the cyanobacteria has been proposed to present high lateral mobility on the thylakoid membrane surface. In contrast, direct measurement of PBsome motility in red algae has been lacking so far. METHODOLOGY/PRINCIPAL FINDINGS In this work,...

متن کامل

Genome of the red alga Porphyridium purpureum

The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 2...

متن کامل

On the prokaryotic nature of red algal chloroplasts.

The sequences of oligonucleotides released by T1 ribonuclease digestion of 32-P-labeled 16S (chloroplast) and 18S (cytoplasmic) ribosomal RNAs from a marine species of Porphyridium (Rhodophyta) have been determined. The resultant catalogs have been compared to those obtained for three prokaryotes:Escherichia coli, Bacillus subtilis, and Anacystis nidulans (a blud-green alga). There is extensive...

متن کامل

Granules Associated with the Chloroplast Lamellae of Porphyridium Cruentum

Small granules with a diameter of approximately 350 A are attached to the chloroplast lamellae of the red alga Porphyridium cruentum. To some extent, their size depends on the culture conditions and the age of the cell. It was possible to preserve the granules only with aldehyde prefixation. It can be seen that fixed or negatively stained granules are comprised of smaller subunits. The granules...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 129 1  شماره 

صفحات  -

تاریخ انتشار 2002