Gene transfer on inorganic/organic hybrid silica nanosheets.
نویسندگان
چکیده
Gene delivery is often accomplished by the forward or reverse transfection protocol. In either protocol, a transfection reagent (usually cationic) is added to increase the delivery efficiency. In this study, we employed a series of nanosheet networks to facilitate the delivery of naked plasmid DNA into human mesenchymal stem cells (hMSCs). By adding different chemicals into the reaction mixture for etching the silica glass, we were able to fabricate inorganic/organic hybrid nanosheet networks with different physico-chemical characteristics. We then analyzed the transfection efficiency on different nanosheets and the possible dependence of the transfection efficiency on the physico-chemical parameters of nanosheets. The results showed that all nanosheet networks were noncytotoxic and demonstrated a high cell survival rate (∼90%) after transfection. The transfection efficiency was critically determined by the aspect ratio (height/thickness of the wall) of the nanosheets. The effects of chemistry or other surface properties were not significant. Moreover, the transfection efficiency may be successfully predicted by the initial cell migration rate and the activation of integrin β3 on the nanosheets. Compared to the conventional method, transfection using concurrent cell/plasmid seeding on the nanosheets is not only more effective but also much safer. Future efforts may focus on combining the inorganic/organic hybrid nanosheets with soft substrates for in situ transfection.
منابع مشابه
Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review
The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...
متن کاملOrganic-inorganic hybrid nanomaterials prepared from 4- formyl benzo-12-crown-4-ether and silica coated magnetite nanoparticles
Silica coated magnetite nanoparticles were covalent grafted with 3-aminopropyl trimethoxysilane to give APTSCMNPs. Reaction of the resulted nanomaterial with 4-formyl benzo-12-crown-4 ether afforded FB12C4/APTSMNPs nanocomposite material in which the crown ether moiety was attached through propyl chain spacer. Characterization of the prepared nanocomposite was performed wit...
متن کاملMultifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery
To study the cellular uptake mechanism of multifunctional organic-inorganic hybrid nanoparticles and nanosheets, new chitosan-glutathione-valine-valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic-inorganic hybrid nanoparticles and nanosheets sh...
متن کاملSilica -magnetic inorganic hybrid nanomaterials as versatile sensing platform
Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and s...
متن کاملHybrid nanosheets of an inorganic-organic framework material: facile synthesis, structure, and elastic properties.
We report a new 2-D inorganic-organic framework material, MnDMS [Mn 2,2-dimethylsuccinate], featuring weakly bound hybrid layers in its bulk crystals that can be readily exfoliated into nanosheets via ultrasonication. The fully exfoliated hybrid nanosheets correspond to a unilamellar thickness of about 1 nm, while the partially exfoliated nanosheets (multilayer films) exhibit a typical thicknes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 38 شماره
صفحات -
تاریخ انتشار 2015