Planar undulator motion excited by a fixed traveling wave: Quasiperiodic averaging, normal forms, and the free electron laser pendulum
نویسندگان
چکیده
We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As varies the system passes through resonant and nonresonant (NonR) intervals and we develop NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR normal forms contain a parameter which measures the distance from a resonance. For the planar motion, with the special initial condition that matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near-identity transformation and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NearR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in the framework of dynamical systems theory sets the stage for our mathematical investigation of the collective high gain regime.
منابع مشابه
Plasma Wave Acceleration of Electron in Bubble Regime in Presence of a Planar Wiggler
The plasma wave acceleration of electron in the bubble regime is investigated in a new configuration containing a planar wiggler. The space-charge field of the laser-created ion channel can focuse and stabilize the electron trajectory to guide it toward the acceleration region. The high-gradient plasma wave field can resonantly accelerate the trapped electron to higher energies in the presence ...
متن کاملNORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS
This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...
متن کاملTraveling Wave Undulators for FELs and Synchrotron Radiation Sources
We study the use of a traveling wave waveguide as an undulator for short wavelength free-electron lasers (FELs) and synchrotron radiation sources. This type of undulator -which we will call TWUcan be useful when a short electron oscillation period and a large aperture for the propagation of the beam are needed. The availability of high power X-band microwave sources, developed for the electron-...
متن کاملRadiation of Relativistic Particles for Quasiperiodic Motion in a Transparent Medium
The radiation of relativistic charged particles for the quasiperiodic motion in a transparent medium is considered. For motion of the general kind the differential probability of the process is obtained. For planar motion the spectral intensity of radiation is found. The different cases of radiation in the medium-filled undulators are studied. In particular, the influence of Cherenkov radiation...
متن کاملVariable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source∗
We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable ...
متن کامل