Elesclomol induces cancer cell apoptosis through oxidative stress.
نویسندگان
چکیده
Elesclomol (formerly STA-4783) is a novel small molecule undergoing clinical evaluation in a pivotal phase III melanoma trial (SYMMETRY). In a phase II randomized, double-blinded, controlled, multi-center trial in 81 patients with stage IV metastatic melanoma, treatment with elesclomol plus paclitaxel showed a statistically significant doubling of progression-free survival time compared with treatment with paclitaxel alone. Although elesclomol displays significant therapeutic activity in the clinic, the mechanism underlying its anticancer activity has not been defined previously. Here, we show that elesclomol induces apoptosis in cancer cells through the induction of oxidative stress. Treatment of cancer cells in vitro with elesclomol resulted in the rapid generation of reactive oxygen species (ROS) and the induction of a transcriptional gene profile characteristic of an oxidative stress response. Inhibition of oxidative stress by the antioxidant N-acetylcysteine blocked the induction of gene transcription by elesclomol. In addition, N-acetylcysteine blocked drug-induced apoptosis, indicating that ROS generation is the primary mechanism responsible for the proapoptotic activity of elesclomol. Excessive ROS production and elevated levels of oxidative stress are critical biochemical alterations that contribute to cancer cell growth. Thus, the induction of oxidative stress by elesclomol exploits this unique characteristic of cancer cells by increasing ROS levels beyond a threshold that triggers cell death.
منابع مشابه
Silencing of NAC1 Expression Induces Cancer Cells Oxidative Stress in Hypoxia and Potentiates the Therapeutic Activity of Elesclomol
In order to survive under conditions of low oxygen, cancer cells can undergo a metabolic switch to glycolysis and suppress mitochondrial respiration in order to reduce oxygen consumption and prevent excessive amounts of reactive oxygen species (ROS) production. Nucleus accumbens-1 (NAC1), a nuclear protein of the BTB/POZ gene family, has pivotal roles in cancer development. Here, we identified ...
متن کاملLoss of ARID1A expression leads to sensitivity to ROS-inducing agent elesclomol in gynecologic cancer cells
Inactivating mutations in ARID1A are found in a broad spectrum of cancer types, with the highest frequency in gynecologic cancers. However, therapeutic strategies targeting ARID1A-mutant cancer cells remain limited. In this study, we aimed to identify drugs sensitivities in ARID1A-mutant cancer cell lines. By analyzing the Genomics of Drug Sensitivity in Cancer database, we found that ARID1A-mu...
متن کاملMitochondrial Respiration - An Important Therapeutic Target in Melanoma
The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS) has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS) has a promi...
متن کاملMitochondrial Electron Transport Is the Cellular Target of the Oncology Drug Elesclomol
Elesclomol is a first-in-class investigational drug currently undergoing clinical evaluation as a novel cancer therapeutic. The potent antitumor activity of the compound results from the elevation of reactive oxygen species (ROS) and oxidative stress to levels incompatible with cellular survival. However, the molecular target(s) and mechanism by which elesclomol generates ROS and subsequent cel...
متن کاملChemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death.
Deoxynyboquinone (DNQ) is a potent antineoplastic agent with an unknown mechanism of action. Here we describe a facile synthetic route to this anthraquinone, and we use this material to determine the mechanism by which DNQ induces death in cancer cells. DNQ was synthesized in seven linear steps through a route employing three palladium-mediated coupling reactions. Experiments performed on cance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2008