Bloch and Bmo Functions in the Unit Ball

نویسندگان

  • HASI WULAN
  • KEHE ZHU
چکیده

We give a characterization of lacunary series in the Bloch space of the unit ball in C in terms of Taylor coefficients. We also characterize Bloch functions whose Taylor coefficients are nonnegative. The corresponding problems for BMOA are discussed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bloch Space and Bmo Analytic Functions in the Tube over the Spherical Cone

We prove that the Bloch space coincides with the space BMOA in the tube over the spherical cone of R.3; this extends a well-known onedimensional result. Introduction. Let Q be a symmetric Siegel domain of type II contained in Cn. Let V denote the Lebesgue measure in fi and H{Q) the space of holomorphic (or analytic) functions in fi. When n = 1 and fi = tt+ = {z £ C: Imz > 0}, a Bloch function i...

متن کامل

SOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK

We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Growth and Products of Subharmonic Functions in the Unit Ball

The purpose of this paper is to link informations on the application u 7→ gu with some growth conditions on the functions u and g subharmonic in the unit ball of R . Two kinds of growth are considered: the Bloch–type growth and growth conditions expressed through integrals involving involutions of the unit ball.

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005