Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.

نویسندگان

  • Sheng-Yi Chiu
  • Chien-Ya Kao
  • Tzu-Ting Huang
  • Chia-Jung Lin
  • Seow-Chin Ong
  • Chun-Da Chen
  • Jo-Shu Chang
  • Chih-Sheng Lin
چکیده

The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L⁻¹ (with an initial culture biomass concentration of 0.75 g L⁻¹), 0.52 g L⁻¹ d⁻¹ and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO₂ removal from the flue gas could reach to 60%, and NO and SO₂ removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO₂, NO and SO₂ from flue gas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(...

متن کامل

Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas

This study tested the growth of three algal species (Chlorella sp., Synechocystis sp. PCC 6803, and Tetraselmis suecica) using flue gas (generated by natural gas combustion). All the cultures showed poor biomass growth if they were exposed to continuous flue gas. To optimize the flue gas utilization in algal photo-bioreactors, we performed both model simulations and experimental analysis. First...

متن کامل

Biofixation of Carbon Dioxide from Kerosene Combustion and Biomass Production by Spirulina

  Background and purpose: CO2 is the main cause of greenhouse effect. Previous studies have shown that CO2 in methane and coal flue gas can lead to microalgae growth. The aim of this research was to study the CO2 biofixation by Spirulina and injecting kerosene flue gas. Materials and methods: A photo bioreactor was fabricated in which kerosene flue gas and air were separately injected. The ph...

متن کامل

Parallel Nutrient Removal and Biogas Production by Chlorella Vulgaris Cultures

In aquatic environments, eutrophication causes algal blooms, oxygen depletion, increase in undesired vegetation, loss of plant beds, fish, coral reef and other species. Eventually, the water bodies become unavailable to utilize for agricultural, recreational, industrial and drinking purposes. Discharge of domestic sewage introducing high levels of nutrients to water bodies is one of the main ca...

متن کامل

Experimental Investigation and Modeling of Carbon Dioxide Adsorption from Model Flue gas

In this work, the adsorption of carbon dioxide from model flue gas on different adsorbents has been investigated. Using simplified modeling, parameters such as the total mass transfer coefficient and the effective diffusivity have been determined. Experiments were carried out in two sections: firstly, adsorption of pure carbon dioxide on different adsorbents was measured at pressures ranging fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 102 19  شماره 

صفحات  -

تاریخ انتشار 2011