Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes: involvement of p53 accumulation via ARF-mediated MDM2 down-regulation.
نویسندگان
چکیده
Transcriptional factor E2F-1 as well as tumor suppressor p53 have been shown to cause apoptosis independently in some types of human cancer cells when overexpressed. Here we report that sequential transfer of the wild-type p53 and E2F-1 genes efficiently induces apoptosis in human esophageal cancer cells and that E2F-1 overexpression directly, activates expression of p14 (ARF), which inhibits MDM2-mediated p53 degradation, resulting in the stabilization of p53. Infection of human esophageal cancer cell lines T.Tn and TE8 with adenovirus vector-expressing E2F-1 (Ad-E2F-1) enhanced mRNA and protein expression of ARF and decreased MDM2 protein expression. Transfection of ARF plasmid decreased MDM2 protein expression, which in turn increased p53 protein expression. Infection of T.Tn and TE8 cells first with adenovirus-expressing wild-type p53 (Ad-p53) and then with Ad-E2F-1 resulted in rapid induction of apoptosis; in contrast, simultaneous infection with Ad-E2F-1 and Ad-p53 had no significant antitumor effect. As shown by Western blot analysis, infection with suboptimal concentrations of Ad-E2F-1 induced the accumulation of exogenous p53 transduced by suboptimal concentrations of Ad-p53. Moreover, Ad-E2F-1-mediated ARF expression inhibited the up-regulation of MDM2 by overexpressed p53 in TE8 cells. Thus, overexpression of ectopic E2F-1 protein may stabilize endogenous as well as ectopic p53 protein via the E2F-1/ARF/MDM2/p53 regulatory pathway and, in this way, render cells more sensitive to apoptosis, an outcome that has important implications for the treatment of human esophageal cancers.
منابع مشابه
The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملWild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line
The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...
متن کاملOncomir miR-125b Suppresses p14ARF to Modulate p53-Dependent and p53-Independent Apoptosis in Prostate Cancer
MicroRNAs are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level and regulate complex patterns of gene expression. Our previous studies demonstrated that in human prostate cancer the miRNA miR-125b is highly expressed, leading to a negative regulation of some tumor suppressor genes. In this study, we further extend our studies...
متن کاملCombination E2F-1 and p53 gene transfer does not enhance growth inhibition in human squamous cell carcinoma of the head and neck.
Ample data exist contending that wild-type p53 and E2F-1 cooperate to mediate apoptosis, that E2F-1-mediated apoptosis is p53 dependent in some situations, and that E2F-1 can induce accumulation of p53 in mammalian cells. These data support the investigation of the biological consequences of combined wild-typep53 and E2F-1 overexpression in human squamous cell carcinoma of the head and neck (SC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2000