TermITH-Eval: a French Standard-Based Resource for Keyphrase Extraction Evaluation
نویسندگان
چکیده
Keyphrase extraction is the task of finding phrases that represent the important content of a document. The main aim of keyphrase extraction is to propose textual units that represent the most important topics developed in a document. The output keyphrases of automatic keyphrase extraction methods for test documents are typically evaluated by comparing them to manually assigned reference keyphrases. Each output keyphrase is considered correct if it matches one of the reference keyphrases. However, the choice of the appropriate textual unit (keyphrase) for a topic is sometimes subjective and evaluating by exact matching underestimates the performance. This paper presents a dataset of evaluation scores assigned to automatically extracted keyphrases by human evaluators. Along with the reference keyphrases, the manual evaluations can be used to validate new evaluation measures. Indeed, an evaluation measure that is highly correlated to the manual evaluation is appropriate for the evaluation of automatic keyphrase extraction methods.
منابع مشابه
روش جدید متنکاوی برای استخراج اطلاعات زمینه کاربر بهمنظور بهبود رتبهبندی نتایج موتور جستجو
Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...
متن کاملEvaluating N-gram based Evaluation Metrics for Automatic Keyphrase Extraction
This paper describes a feasibility study of n-gram-based evaluation metrics for automatic keyphrase extraction. To account for near-misses currently ignored by standard evaluation metrics, we adapt various evaluation metrics developed for machine translation and summarization, and also the R-precision evaluation metric from keyphrase evaluation. In evaluation, the R-precision metric is found to...
متن کاملApproximate Matching for Evaluating Keyphrase Extraction
We propose a new evaluation strategy for keyphrase extraction based on approximate keyphrase matching. It corresponds well with human judgments and is better suited to assess the performance of keyphrase extraction approaches. Additionally, we propose a generalized framework for comprehensive analysis of keyphrase extraction that subsumes most existing approaches, which allows for fair testing ...
متن کاملState of the Art of Automatic Keyphrase Extraction Methods (État de l'art des méthodes d'extraction automatique de termes-clés) [in French]
State of the Art of Automatic Keyphrase Extraction Methods This article presents the state of the art of the automatic keyphrase extraction methods. The aim of the automatic keyphrase extraction task is to extract the most representative terms of a document. Automatic keyphrase extraction methods can be divided into two categories : supervised methods and unsupervised methods. For supervised me...
متن کاملConundrums in Unsupervised Keyphrase Extraction: Making Sense of the State-of-the-Art
State-of-the-art approaches for unsupervised keyphrase extraction are typically evaluated on a single dataset with a single parameter setting. Consequently, it is unclear how effective these approaches are on a new dataset from a different domain, and how sensitive they are to changes in parameter settings. To gain a better understanding of state-of-the-art unsupervised keyphrase extraction alg...
متن کامل